Names | Vanguard Space Launch Vehicle-Five |
---|---|
Mission type | Magnetic Field Experiment Air Density Experiment |
Operator | Naval Research Laboratory |
COSPAR ID | |
Mission duration | Failed to orbit (500 seconds) |
Spacecraft properties | |
Spacecraft | Vanguard 3A |
Spacecraft type | Vanguard |
Manufacturer | Naval Research Laboratory |
Launch mass | 10.3 kg (23 lb) |
Start of mission | |
Launch date | 14 April 1959, 02:49:46 GMT |
Rocket | Vanguard SLV-5 |
Launch site | Cape Canaveral, LC-18A |
Contractor | Glenn L. Martin Company |
End of mission | |
Decay date | Failed to orbit |
Orbital parameters | |
Reference system | Geocentric orbit (planned) |
Regime | Medium Earth orbit |
Perigee altitude | 655 km |
Apogee altitude | 3840 km |
Inclination | 34.20° |
Period | 134.0 minutes |
Instruments | |
Magnetometer | |
Vanguard SLV-5, also called Vanguard Satellite Launch Vehicle-Five hoped to be the third successful flight of the American Vanguard rocket following the successful Vanguard 2 satellite on rocket Vanguard SLV-4.
Vanguard Satellite Launch Vehicle-5 (SLV-5) was designed to place two satellites in orbit, Vanguard 3A, a 33 cm (13 in) of diameter sphere (Sphere A) equipped with a magnetometer, and a 76.2 cm (30.0 in) of diameter aluminum-coated round inflatable sphere (Sphere B), containing no instrumentation, but an air density measurement device, for optical tracking. Launched in April 1959, the mission failed when the second stage failed to operate following first-stage separation. The satellites and third stage tumbled into the Atlantic Ocean several hundred kilometers off the coast after about 500 seconds of flight. [1] [2] [3]
Vanguard was the designation used for both the launch vehicle and the satellite. The first stage of the three-stage Vanguard Test Vehicle was powered by a General Electric X-405 125,000 N (28,000 lbf) thrust liquid rocket engine, propelled by 7,200 kg (15,900 lb) of kerosene (RP-1) and liquid oxygen, with helium pressurant. It also held 152 kg (335 lb) of hydrogen peroxide. It was finless, 13.4 m (44 ft) tall, 1.14 m (3 ft 9 in) in diameter, and had a launch mass of approximately 8,090 kg (17,840 lb). [1]
The second stage was a 5.8 m (19 ft) high, 0.8 m (2 ft 7 in) of diameter Aerojet General AJ-10 liquid engine burning 1,520 kg (3,350 lb) Unsymmetrical dimethylhydrazine (UDMH) and White Inhibited Fuming Nitric Acid (WIFNA) with a helium pressurant tank. It produced a thrust of 32,600 N (7,300 lbf) and had a launch mass of approximately 1,990 kg (4,390 lb). This stage contained the complete guidance and control system. [1]
A solid-propellant rocket with 10,400 N (2,300 lbf) of thrust (for 30 seconds burn time) was developed by the Grand Central Rocket Company to satisfy third-stage requirements. The stage was 1.5 m (4 ft 11 in) high, 0.8 m (2 ft 7 in) in diameter, and had a launch mass of 194 kg (428 lb). The thin 0.076 cm (0.030 in) steel casing for the third stage had a hemispherical forward dome with a shaft at the center to support the satellite and an aft dome fairing into a steel exit nozzle. [1]
The total height of the vehicle with the satellite fairing was about 21.9 m (72 ft). The payload capacity was 11.3 kg (25 lb) to a 555 km (345 mi) Earth orbit. A nominal launch would have the first stage firing for 144 seconds, bringing the rocket to an altitude of 58 km (36 mi), followed by the second stage burn of 120 seconds to 480 km (300 mi), whereupon the third stage would bring the satellite to orbit. This was the same launch vehicle configuration, with minor modifications, as used for Vanguard TV-3 and all succeeding Vanguard flights up to and including Vanguard SLV-6. [1]
The primary objective of the Magnetic Field Satellite (Sphere A) was to determine the source of magnetic storms - to determine if they occur due to electric currents in the ionosphere or from currents at much greater distances. A secondary objective was to obtain data on the daily cycle of magnetic field variations, thus providing a highly accurate map of the Earth's main magnetic field in certain regions of space. [1]
The Magnetic Field Satellite was a 33 cm (13 in) of diameter fiberglass sphere with a 6.2 cm (2.44 inch) of diameter fiberglass cylindrical boom protruding 43.8 cm (17.2 in) from the top, and a 7.0 cm (2.8 in) diameter magnesium cylinder protruding 4.1 cm (1.6 in) from the base. Four 59.7 cm (23.5 in) spring-actuated antennas were mounted to the satellites equator, equally spaced. Each antennas was 0.95 cm (0.37 in) in diameter at the base and 0.64 cm (0.25 in) at the tip. The interior of the satellite held a cylindrical magnesium container with two pressure-tight compartments. The lower compartment held the batteries, and the upper compartment held the magnetometer electronics, an 80 milliwatt telemetry transmitter operating at 108.3 MHz, a 10 milliwatt Minitrack beacon transmitter at 108.00 MHz, and a command receiver. The magnetometer was a proton precessional magnetometer. The magnetometer sensing unit was mounted in the outer end of the fiberglass boom. The design of the satellite required non-magnetic materials, including special batteries. [1]
The Sub-Satellite (Sphere B) objective was to provide data on air density in the outer limits of the atmosphere of Earth. A later version of the Magnetic Field Satellite was successfully launched as Vanguard 3 (1959 Eta 1). [1]
The Sub-Satellite was stored, uninflated, in a fiberglass container beneath the Magnetic Field Satellite, along with a small tank containing nitrogen at a pressure of 9,700 kPa (1,410 psi). On separation of the Magnetic Field Satellite, a preset latch would release the gas into the Sub-Satellite, inflating it and pushing it free of the spent third stage. Upon inflation, the Sub-Satellite would be a 76.2 cm (30 inch) diameter aluminum-coated mylar balloon. It contained no instrumentation and was designed to be optically tracked from Earth to provide data on the density of the upper atmosphere by measuring its effect on the satellite orbit.
Vanguard SLV-5 launched on 14 April 1959 at 02:49:46 GMT (09:49:46 p.m. EST, 13 April 1959), from Launch Complex 18A (LC-18A) at the Cape Canaveral Air Force Station (CCAFS). At separation of the first stage 142.0 seconds after launch, caused the second stage engine to ignite while still attached to the first stage. Pressure from the engine exhaust pushed the thrust chamber to the limit of the gimbal stops, breaking them and causing loss of attitude control in flight. The pitch-attitude control of the second stage was lost due to large side forces acting on the second stage exhaust nozzle caused by back pressure built up in the interstage compartment. The third stage and satellites were thrown from the tumbling second stage. The second stage tumbled and the resultant forces caused a premature separation of the third stage and payload. Data was received from them until impact into the Atlantic Ocean eight minutes after liftoff. [4] [5] [6] [1]
The Jupiter-C was an American research and development vehicle developed from the Jupiter-A. Jupiter-C was used for three unmanned sub-orbital spaceflights in 1956 and 1957 to test re-entry nosecones that were later to be deployed on the more advanced PGM-19 Jupiter mobile missile. The recovered nosecone was displayed in the Oval Office as part of President Dwight D. Eisenhower's televised speech on November 7, 1957.
Pioneer 1 was an American space probe, the first under the auspices of NASA, which was launched by a Thor-Able rocket on 11 October 1958. It was intended to orbit the Moon and make scientific measurements, but due to a guidance error failed to achieve lunar orbit and was ultimately destroyed upon reentering Earth's atmosphere. The flight, which lasted 43 hours and reached an apogee of 113,800 km, was the second and most successful of the three Thor-Able space probes.
Pioneer P-30 was intended to be a lunar orbiter probe, but the mission failed shortly after launch on September 25, 1960. The objectives were to place a highly instrumented probe in lunar orbit, to investigate the environment between the Earth and Moon, and to develop technology for controlling and maneuvering spacecraft from Earth. It was equipped to estimate the Moon's mass and topography of the poles, record the distribution and velocity of micrometeorites, and study radiation, magnetic fields, and low frequency electromagnetic waves in space. A mid-course propulsion system and injection rocket would have been the first United States self-contained propulsion system capable of operation many months after launch at great distances from Earth and the first U.S. tests of maneuvering a satellite in space.
Project Vanguard was a program managed by the United States Navy Naval Research Laboratory (NRL), which intended to launch the first artificial satellite into low Earth orbit using a Vanguard rocket. as the launch vehicle from Cape Canaveral Missile Annex, Florida.
Delta is an American versatile family of expendable launch systems that has provided space launch capability in the United States since 1960. Japan also launched license-built derivatives from 1975 to 1992. More than 300 Delta rockets have been launched with a 95% success rate. Only the Delta IV Heavy rocket remains in use as of November 2020. Delta rockets are currently manufactured and launched by the United Launch Alliance.
Vanguard 2 is an Earth-orbiting satellite launched 17 February 1959 at 15:55:02 GMT, aboard a Vanguard SLV-4 rocket as part of the United States Navy's Project Vanguard. The satellite was designed to measure cloud cover distribution over the daylight portion of its orbit, for a period of 19 days, and to provide information on the density of the atmosphere for the lifetime of its orbit. As the first weather satellite and one of the first orbital space missions, the launch of Vanguard 2 was an important milestone in the Space Race between the United States and the Soviet Union. Vanguard 2 remains in orbit.
Vanguard 3 is a scientific satellite that was launched into Earth orbit by the Vanguard SLV-7 on 18 September 1959, the third successful Vanguard launch out of eleven attempts. Vanguard rocket: Vanguard Satellite Launch Vehicle-7 (SLV-7) was an unused Vanguard TV-4BU rocket, updated to the final production Satellite Launch Vehicle (SLV).
The Titan IIIC was an expendable launch system used by the United States Air Force from 1965 until 1982. It was the first Titan booster to feature large solid rocket motors and was planned to be used as a launcher for the Dyna-Soar, though the spaceplane was cancelled before it could fly. The majority of the launcher's payloads were DoD satellites, for military communications and early warning, though one flight (ATS-6) was performed by NASA. The Titan IIIC was launched exclusively from Cape Canaveral while its sibling, the Titan IIID, was launched only from Vandenberg AFB.
The Vanguard rocket was intended to be the first launch vehicle the United States would use to place a satellite into orbit. Instead, the Sputnik crisis caused by the surprise launch of Sputnik 1 led the U.S., after the failure of Vanguard TV-3, to quickly orbit the Explorer 1 satellite using a Juno I rocket, making Vanguard 1 the second successful U.S. orbital launch.
Geosynchronous Satellite Launch Vehicle (GSLV) is an expendable launch system operated by the Indian Space Research Organisation (ISRO). GSLV was used in fourteen launches from 2001 to 2021, with more launches planned. Even though GSLV Mark III shares the name, it is an entirely different launch vehicle.
The Scout family of rockets were American launch vehicles designed to place small satellites into orbit around the Earth. The Scout multistage rocket was the first orbital launch vehicle to be entirely composed of solid fuel stages. It was also the only vehicle of that type until the successful launch of the Japanese Lambda 4S in 1970.
The Augmented Satellite Launch Vehicle or Advanced Satellite Launch Vehicle, also known as ASLV, was a Small-lift launch vehicle five-stage solid-fuel rocket developed by the Indian Space Research Organisation (ISRO) to place 150 kg satellites into LEO. This project was started by India during the early 1980s to develop technologies needed for a payload to be placed into a geostationary orbit. Its design was based on Satellite Launch Vehicle. ISRO did not have sufficient funds for both the Polar Satellite Launch Vehicle programme and the ASLV programme at the same time and the ASLV programme was terminated after the initial developmental flights. The payloads of ASLV were Stretched Rohini Satellites.
Thor was a US space launch vehicle derived from the PGM-17 Thor intermediate-range ballistic missile. The Thor rocket was the first member of the Delta rocket family of space launch vehicles. The last launch of a direct derivative of the Thor missile occurred in 2018 as the first stage of the final Delta II.
Vanguard TV-3BU, also called Vanguard Test Vehicle-Three Backup, was the second flight of the American Vanguard rocket. An unsuccessful attempt to place an unnamed satellite, Vanguard 1B, into orbit, the rocket was launched on 5 February 1958. It was launched from LC-18A at the Cape Canaveral Air Force Station. Fifty-seven seconds after launch, control of the vehicle was lost and it failed to achieve orbit. At 57 seconds, the booster suddenly pitched down. The skinny second stage broke in half from aerodynamic stress, causing the Vanguard to tumble end-over-end before range safety officer sent the destruct command. The cause of the failure was attributed to a spurious guidance signal that caused the first stage to perform unintended pitch maneuvers. Vanguard TV-3BU only reached an altitude of 6.1 km (3.8 mi), the goal was 3,840 km (2,390 mi).
Vanguard TV-5, also called Vanguard Test Vehicle-Five, was a failed flight of the American Vanguard rocket following the successful launch of Vanguard 1 on Vanguard TV-4. Vanguard TV-5 launched on 29 April 1958 at 02:53:00 GMT, from Launch Complex 18A at the Cape Canaveral Air Force Station. The rocket was unsuccessful in its attempt to place an unnamed satellite into orbit.
Vanguard SLV-1, also called Vanguard Satellite Launch Vehicle-1 was hoped to be the second successful flight of the American Vanguard rocket following the successful launch of the Vanguard 1 satellite on rocket Vanguard TV-4 in March 1958.
Vanguard SLV-2, also called Vanguard Satellite Launch Vehicle-2 hoped to be the second successful flight of the American Vanguard rocket following successful Vanguard 1 satellite on rocket Vanguard TV-4.
Vanguard SLV-3, also called Vanguard Satellite Launch Vehicle-3 hoped to be the second successful flight of the American Vanguard rocket following successful Vanguard 1 satellite on rocket Vanguard TV-4.
Vanguard SLV-6, also called Vanguard Satellite Launch Vehicle-Six, hoped to be the third successful flight of the American Vanguard rocket following the successful Vanguard 2 satellite on rocket Vanguard SLV-4. Vanguard Satellite Launch Vehicle-6 (SLV-6) was designed to carry a small spherical satellite into Earth orbit to study solar heating of Earth and the heat balance. A faulty second stage pressure valve caused a mission failure.
The Able rocket stage was a rocket stage manufactured in the United States by Aerojet as the second of three stages of the Vanguard rocket used in the Vanguard project from 1957 to 1959. The rocket engine used nitric acid and UDMH as rocket propellants. The Able rocket stage was discontinued in 1960. The improved Ablestar version was used as the upper stage of the Thor-Ablestar two stage launcher. The Ablestar second stage was an enlarged version of the Able rocket stage, which gave the Thor-Ablestar a greater payload capacity compared to the earlier Thor-Able. It also incorporated restart capabilities, allowing a multiple-burn trajectory to be flown, further increasing payload, or allowing the rocket to reach different orbits. It was the first rocket to be developed with such a capability and development of the stage took a mere eight months.