Vanguard SLV-6

Last updated

Vanguard SLV-6
Vanguard tv-3 launchpad.jpg
Vanguard rocket on LC-18A prior to its launch
NamesVanguard Space Launch Vehicle-Six
Mission type Solar heating of Earth
Operator Naval Research Laboratory
COSPAR ID OOjs UI icon edit-ltr-progressive.svg
Mission durationFailed to orbit
Spacecraft properties
SpacecraftVanguard 3B
Spacecraft type Vanguard
Manufacturer Naval Research Laboratory
Launch mass10.8 kg (24 lb)
Dimensions50.8 cm (20.0 in) of diameter
Start of mission
Launch date22 June 1959, 20:16:09 GMT
Rocket Vanguard SLV-6
Launch site Cape Canaveral, LC-18A
Contractor Glenn L. Martin Company
End of mission
Decay dateFailed to orbit
Orbital parameters
Reference system Geocentric orbit (planned)
Regime Medium Earth orbit
Perigee altitude 655 km
Apogee altitude 3840 km
Inclination 34.20°
Period 134.0 minutes
 

Vanguard SLV-6, also called Vanguard Satellite Launch Vehicle-Six, hoped to be the third successful flight of the American Vanguard rocket following the successful Vanguard 2 satellite on rocket Vanguard SLV-4. Vanguard Satellite Launch Vehicle-6 (SLV-6) was designed to carry a small spherical satellite into Earth orbit to study solar heating of Earth and the heat balance. A faulty second stage pressure valve caused a mission failure.

Contents

Launch vehicle

Vanguard was the designation used for both the launch vehicle and the satellite. The first stage of the three-stage Vanguard Test Vehicle was powered by a General Electric X-405 125,000 N (28,000 lbf) thrust liquid rocket engine, propelled by kerosene (RP-1) and liquid oxygen, with helium pressurant. It was finless, 13.4 m (44 ft) tall, 1.14 m (3 ft 9 in) in diameter, and had a launch mass of approximately 8,180 kg (18,030 lb). [1]

The second stage was a 5.8 m (19 ft) high, 0.8 m (2 ft 7 in) of diameter Aerojet General AJ-10 liquid engine burning Unsymmetrical dimethylhydrazine (UDMH) and White Inhibited Fuming Nitric Acid (WIFNA) with a helium pressurant tank. It produced a thrust of 33,300 N (7,500 lbf) and had a launch mass of approximately 1,980 kg (4,370 lb). This stage contained the complete guidance and control system. [1]

A solid-propellant rocket with 10,400 N (2,300 lbf) of thrust (for 30 seconds burn time) was developed by the Grand Central Rocket Company to satisfy third-stage requirements. The stage was 1.5 m (4 ft 11 in) high, 0.8 m (2 ft 7 in) in diameter, and had a launch mass of 194 kg (428 lb). The thin 0.076 cm (0.030 in) steel casing for the third stage had a hemispherical forward dome with a shaft at the center to support the satellite and an aft dome fairing into a steel exit nozzle. [1]

The total height of the vehicle with the satellite fairing was about 21.9 m (72 ft). The payload capacity was 11.3 kg (25 lb) to a 555 km (345 mi) Earth orbit. A nominal launch would have the first stage bringing the rocket to an altitude of 58 km (36 mi), followed by the second stage to 480 km (300 mi), whereupon the third stage would bring the satellite to orbit. This was the same launch vehicle configuration, with minor modifications, as used for Vanguard TV-3 and all succeeding Vanguard flights up to this one. [1]

Spacecraft

The SLV-6 satellite was a 10.8 kg (24 lb), 50.8 cm (20.0 in) of diameter sphere. The shell was composed of magnesium alloy and the interior was pressurized. The payload instrumentation package was mounted in the center of the sphere. The package was arranged in a cylindrical stack with mercury batteries at the bottom, followed by the Minitrack tracking system electronics, the environment electronics, the telemetering instrumentation, and the experiment electronics. Below the package at the bottom of the sphere was the separation device, a spring loaded tube with a timer designed to push the satellite away from the third stage after orbit was reached. At the top of the interior of the sphere was a pressure gauge. Four 76.2 cm (30.0 in) spring-loaded metal rods were folded along the equator of the sphere and would protrude radially outward when deployed, acting as a turnstile antenna. Mounted at the end of each antenna rod was a thermistor to measure solar heating processes. Two transmitters were used, one of 10 mW broadcasting at 108.00 MHz and one of 100 mW at 108.03 MHz. [1]

Launch

Vanguard SLV-6 launched on 22 June 1959 at 20:16:09 GMT. It was launched from Launch Complex 18A (LC-18A) at the Cape Canaveral Air Force Station (CCAFS). The second stage helium control bottle valve failed to open properly at engine start. Tank and chamber pressures rapidly decayed during second stage burn, and 40 seconds after engine start, the helium bottle ruptured due to pressure buildup. The third stage then separated and ignited, driving itself and the satellite into the Atlantic Ocean 500 km (310 mi) downrange. [2] [3] [4] [5] [1]

See also

Related Research Articles

Jupiter-C Part of the Redstone rocket family

The Jupiter-C was an American research and development vehicle developed from the Jupiter-A. Jupiter-C was used for three unmanned sub-orbital spaceflights in 1956 and 1957 to test re-entry nosecones that were later to be deployed on the more advanced PGM-19 Jupiter mobile missile. The recovered nosecone was displayed in the Oval Office as part of President Dwight D. Eisenhower's televised speech on November 7, 1957.

Vanguard TV-3 U.S. satellite in 1957

Vanguard TV-3, was the first attempt of the United States to launch a satellite into orbit around the Earth, after the successful Soviet launches of Sputnik 1 and Sputnik 2. Vanguard TV-3 was a small satellite designed to test the launch capabilities of the three-stage Vanguard and study the effects of the environment on a satellite and its systems in Earth orbit. It was also to be used to obtain geodetic measurements through orbit analysis. Solar cells on Vanguard TV-3 were manufactured by Bell Laboratories.

Polar Satellite Launch Vehicle Expendable system for launching satellites, developed by the Indian Space Research Organisation

The Polar Satellite Launch Vehicle (PSLV) is an expendable medium-lift launch vehicle designed and operated by the Indian Space Research Organisation (ISRO). It was developed to allow India to launch its Indian Remote Sensing (IRS) satellites into sun-synchronous orbits, a service that was, until the advent of the PSLV in 1993, commercially available only from Russia. PSLV can also launch small size satellites into Geostationary Transfer Orbit (GTO).

Project Vanguard was a program managed by the United States Navy Naval Research Laboratory (NRL), which intended to launch the first artificial satellite into low Earth orbit using a Vanguard rocket. as the launch vehicle from Cape Canaveral Missile Annex, Florida.

Saturn (rocket family) Family of American heavy-lift rocket launch vehicles

The Saturn family of American rockets was developed by a team of mostly German rocket scientists led by Wernher von Braun to launch heavy payloads to Earth orbit and beyond. The Saturn family used liquid hydrogen as fuel in the upper stages. Originally proposed as a military satellite launcher, they were adopted as the launch vehicles for the Apollo Moon program. Three versions were built and flown: the medium-lift Saturn I, the heavy-lift Saturn IB, and the super heavy-lift Saturn V.

Delta (rocket family) Rocket family

Delta is an American versatile family of expendable launch systems that has provided space launch capability in the United States since 1960. Japan also launched license-built derivatives from 1975 to 1992. More than 300 Delta rockets have been launched with a 95% success rate. Only the Delta IV Heavy rocket remains in use as of November 2020. Delta rockets are currently manufactured and launched by the United Launch Alliance.

Vanguard 3

Vanguard 3 is a scientific satellite that was launched into Earth orbit by the Vanguard SLV-7 on 18 September 1959, the third successful Vanguard launch out of eleven attempts. Vanguard rocket: Vanguard Satellite Launch Vehicle-7 (SLV-7) was an unused Vanguard TV-4BU rocket, updated to the final production Satellite Launch Vehicle (SLV).

Titan IIIB

Titan IIIB was the collective name for a number of derivatives of the Titan II ICBM and Titan III launch vehicle, modified by the addition of an Agena upper stage. It consisted of four separate rockets. The Titan 23B was a basic Titan II with an Agena upper stage, and the Titan 24B was the same concept, but using the slightly enlarged Titan IIIM rocket as the base. The Titan 33B was a Titan 23B with the Agena enclosed in an enlarged fairing, in order to allow larger payloads to be launched. The final member of the Titan IIIB family was the Titan 34B which was a Titan 24B with the larger fairing used on the Titan 33B.

Titan IIIC Expendable launch system used by the US Air Force

The Titan IIIC was an expendable launch system used by the United States Air Force from 1965 until 1982. It was the first Titan booster to feature large solid rocket motors and was planned to be used as a launcher for the Dyna-Soar, though the spaceplane was cancelled before it could fly. The majority of the launcher's payloads were DoD satellites, for military communications and early warning, though one flight (ATS-6) was performed by NASA. The Titan IIIC was launched exclusively from Cape Canaveral while its sibling, the Titan IIID, was launched only from Vandenberg AFB.

The Vanguard rocket was intended to be the first launch vehicle the United States would use to place a satellite into orbit. Instead, the Sputnik crisis caused by the surprise launch of Sputnik 1 led the U.S., after the failure of Vanguard TV-3, to quickly orbit the Explorer 1 satellite using a Juno I rocket, making Vanguard 1 the second successful U.S. orbital launch.

Geosynchronous Satellite Launch Vehicle Indian satellite launch vehicle

Geosynchronous Satellite Launch Vehicle (GSLV) is an expendable launch system operated by the Indian Space Research Organisation (ISRO). GSLV was used in fourteen launches from 2001 to 2021, with more launches planned. Even though GSLV Mark III shares the name, it is an entirely different launch vehicle.

Thor (rocket family) American rocket family

Thor was a US space launch vehicle derived from the PGM-17 Thor intermediate-range ballistic missile. The Thor rocket was the first member of the Delta rocket family of space launch vehicles. The last launch of a direct derivative of the Thor missile occurred in 2018 as the first stage of the final Delta II.

Vanguard TV-3BU Second flight of the American Vanguard rocket

Vanguard TV-3BU, also called Vanguard Test Vehicle-Three Backup, was the second flight of the American Vanguard rocket. An unsuccessful attempt to place an unnamed satellite, Vanguard 1B, into orbit, the rocket was launched on 5 February 1958. It was launched from LC-18A at the Cape Canaveral Air Force Station. Fifty-seven seconds after launch, control of the vehicle was lost and it failed to achieve orbit. At 57 seconds, the booster suddenly pitched down. The skinny second stage broke in half from aerodynamic stress, causing the Vanguard to tumble end-over-end before range safety officer sent the destruct command. The cause of the failure was attributed to a spurious guidance signal that caused the first stage to perform unintended pitch maneuvers. Vanguard TV-3BU only reached an altitude of 6.1 km (3.8 mi), the goal was 3,840 km (2,390 mi).

Vanguard TV-5 Failed rocket launch

Vanguard TV-5, also called Vanguard Test Vehicle-Five, was a failed flight of the American Vanguard rocket following the successful launch of Vanguard 1 on Vanguard TV-4. Vanguard TV-5 launched on 29 April 1958 at 02:53:00 GMT, from Launch Complex 18A at the Cape Canaveral Air Force Station. The rocket was unsuccessful in its attempt to place an unnamed satellite into orbit.

Vanguard SLV-1 Failed rocket launch

Vanguard SLV-1, also called Vanguard Satellite Launch Vehicle-1 was hoped to be the second successful flight of the American Vanguard rocket following the successful launch of the Vanguard 1 satellite on rocket Vanguard TV-4 in March 1958.

Vanguard SLV-2 Failed rocket launch

Vanguard SLV-2, also called Vanguard Satellite Launch Vehicle-2 hoped to be the second successful flight of the American Vanguard rocket following successful Vanguard 1 satellite on rocket Vanguard TV-4.

Vanguard SLV-3 Failed rocket launch

Vanguard SLV-3, also called Vanguard Satellite Launch Vehicle-3 hoped to be the second successful flight of the American Vanguard rocket following successful Vanguard 1 satellite on rocket Vanguard TV-4.

Vanguard SLV-5 Failed rocket launch

Vanguard SLV-5, also called Vanguard Satellite Launch Vehicle-Five hoped to be the third successful flight of the American Vanguard rocket following the successful Vanguard 2 satellite on rocket Vanguard SLV-4.

Able (rocket stage)

The Able rocket stage was a rocket stage manufactured in the United States by Aerojet as the second of three stages of the Vanguard rocket used in the Vanguard project from 1957 to 1959. The rocket engine used nitric acid and UDMH as rocket propellants. The Able rocket stage was discontinued in 1960. The improved Ablestar version was used as the upper stage of the Thor-Ablestar two stage launcher. The Ablestar second stage was an enlarged version of the Able rocket stage, which gave the Thor-Ablestar a greater payload capacity compared to the earlier Thor-Able. It also incorporated restart capabilities, allowing a multiple-burn trajectory to be flown, further increasing payload, or allowing the rocket to reach different orbits. It was the first rocket to be developed with such a capability and development of the stage took a mere eight months.

Zuljanah (rocket)

Zuljanah, also spelled Zoljanah, is an Iranian Satellite Launch Vehicle (SLV), made by the Ministry of Defence and Armed Forces Logistics (Iran), which was unveiled on 1 February 2021, and was launched into sub-orbital flight for testing and telemetry purposes. Zuljanah is able to carry satellites weighing up to 220kg into an orbit 500 kilometers above the Earth.

References

  1. 1 2 3 4 5 6 "Display: Vanguard SLV-6 VAGSL6". NASA. 14 May 2020. Retrieved 4 February 2021.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  2. "Vanguard Satellite Launch Vehicle" (PDF). NAVY NRL. May 1961. Archived from the original (PDF) on 26 December 2015.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  3. "Vanguard, A History" (PDF). 1970. Retrieved 4 February 2021.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  4. "NASA, Aeronautics and Astronautics Chronology, 1958". NASA. 1961. Retrieved 4 February 2021.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  5. astronautix.com, Vanguard

Further reading