Filename extension | .vcf |
---|---|
Developed by | 1000 Genomes Project |
Latest release | 4.5 June 28, 2024 |
Type of format | Bioinformatics |
Extended from | Tab-separated values |
Extended to | gVCF |
Open format? | Yes |
Website | samtools |
The Variant Call Format or VCF is a standard text file format used in bioinformatics for storing gene sequence variations. The format was developed in 2010 for the 1000 Genomes Project and has since been used by other large-scale genotyping and DNA sequencing projects. [1] [2] VCF is a common output format for variant calling programs due to its relative simplicity and scalability. [3] [4] Many tools have been developed for editing and manipulating VCF files, including VCFtools, which was released in conjunction with the VCF format in 2011, and BCFtools, which was included as part of SAMtools until being split into an independent package in 2014. [1] [5]
The standard is currently in version 4.5, [6] [7] although the 1000 Genomes Project has developed its own specification for structural variations such as duplications, which are not easily accommodated into the existing schema. [8]
Additional file formats have been developed based on VCF, including genomic VCF (gVCF). gVCF is an extended format which includes additional information about "blocks" that match the reference and their qualities. [9] [10]
##fileformat=VCFv4.3 ##fileDate=20090805 ##source=myImputationProgramV3.1 ##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta ##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x> ##phasing=partial ##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data"> ##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth"> ##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency"> ##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele"> ##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129"> ##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership"> ##FILTER=<ID=q10,Description="Quality below 10"> ##FILTER=<ID=s50,Description="Less than 50% of samples have data"> ##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype"> ##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality"> ##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth"> ##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality"> #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA00001 NA00002 NA00003 20 14370 rs6054257 G A 29 PASS NS=3;DP=14;AF=0.5;DB;H2 GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,. 20 17330 . T A 3 q10 NS=3;DP=11;AF=0.017 GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3 0/0:41:3 20 1110696 rs6040355 A G,T 67 PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4 20 1230237 . T . 47 PASS NS=3;DP=13;AA=T GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2 20 1234567 microsat1 GTC G,GTCT 50 PASS NS=3;DP=9;AA=G GT:GQ:DP 0/1:35:4 0/2:17:2 1/1:40:3
The header begins the file and provides metadata describing the body of the file. Header lines are denoted as starting with #. Special keywords in the header are denoted with ##. Recommended keywords include fileformat, fileDate and reference.
The header contains keywords that optionally semantically and syntactically describe the fields used in the body of the file, notably INFO, FILTER, and FORMAT (see below).
The body of VCF follows the header, and is tab separated into 8 mandatory columns and an unlimited number of optional columns that may be used to record other information about the sample(s). When additional columns are used, the first optional column is used to describe the format of the data in the columns that follow.
Name | Brief description (see the specification for details). | |
---|---|---|
1 | CHROM | The name of the sequence (typically a chromosome) on which the variation is being called. This sequence is usually known as 'the reference sequence', i.e. the sequence against which the given sample varies. |
2 | POS | The 1-based position of the variation on the given sequence. |
3 | ID | The identifier of the variation, e.g. a dbSNP rs identifier, or if unknown a ".". Multiple identifiers should be separated by semi-colons without white-space. |
4 | REF | The reference base (or bases in the case of an indel) at the given position on the given reference sequence. |
5 | ALT | The list of alternative alleles at this position. |
6 | QUAL | A quality score associated with the inference of the given alleles. |
7 | FILTER | A flag indicating which of a given set of filters the variation has failed or PASS if all the filters were passed successfully. |
8 | INFO | An extensible list of key-value pairs (fields) describing the variation. See below for some common fields. Multiple fields are separated by semicolons with optional values in the format: <key>=<data>[,data] . |
9 | FORMAT | An (optional) extensible list of fields for describing the samples. See below for some common fields. |
+ | SAMPLEs | For each (optional) sample described in the file, values are given for the fields listed in FORMAT |
Arbitrary keys are permitted, although the following sub-fields are reserved (albeit optional): [6]
Name | Brief description |
---|---|
AA | ancestral allele |
AC | allele count in genotypes, for each ALT allele, in the same order as listed |
AF | allele frequency for each ALT allele in the same order as listed (use this when estimated from primary data, not called genotypes) |
AN | total number of alleles in called genotypes |
BQ | RMS base quality at this position |
CIGAR | cigar string describing how to align an alternate allele to the reference allele |
DB | dbSNP membership |
DP | combined depth across samples, e.g. DP=154 |
END | end position of the variant described in this record (for use with symbolic alleles) |
H2 | membership in hapmap2 |
H3 | membership in hapmap3 |
MQ | RMS mapping quality, e.g. MQ=52 |
MQ0 | Number of MAPQ == 0 reads covering this record |
NS | Number of samples with data |
SB | strand bias at this position |
SOMATIC | indicates that the record is a somatic mutation, for cancer genomics |
VALIDATED | validated by follow-up experiment |
1000G | membership in 1000 Genomes |
Any other info fields are defined in the .vcf header.
Name | Brief description |
---|---|
AD | Read depth for each allele |
ADF | Read depth for each allele on the forward strand |
ADR | Read depth for each allele on the reverse strand |
DP | Read depth |
EC | Expected alternate allele counts |
FT | Filter indicating if this genotype was “called” |
GL | Genotype likelihoods |
GP | Genotype posterior probabilities |
GQ | Conditional genotype quality |
GT | Genotype |
HQ | Haplotype quality |
MQ | RMS mapping quality |
PL | Phred-scaled genotype likelihoods rounded to the closest integer |
PQ | Phasing quality |
PS | Phase set |
Any other format fields are defined in the .vcf header.
Waveform Audio File Format is an audio file format standard for storing an audio bitstream on personal computers. The format was developed and published for the first time in 1991 by IBM and Microsoft. It is the main format used on Microsoft Windows systems for uncompressed audio. The usual bitstream encoding is the linear pulse-code modulation (LPCM) format.
Resource Interchange File Format (RIFF) is a generic file container format for storing data in tagged chunks. It is primarily used for audio and video, though it can be used for arbitrary data.
ZIP is an archive file format that supports lossless data compression. A ZIP file may contain one or more files or directories that may have been compressed. The ZIP file format permits a number of compression algorithms, though DEFLATE is the most common. This format was originally created in 1989 and was first implemented in PKWARE, Inc.'s PKZIP utility, as a replacement for the previous ARC compression format by Thom Henderson. The ZIP format was then quickly supported by many software utilities other than PKZIP. Microsoft has included built-in ZIP support in versions of Microsoft Windows since 1998 via the "Plus! 98" addon for Windows 98. Native support was added as of the year 2000 in Windows ME. Apple has included built-in ZIP support in Mac OS X 10.3 and later. Most free operating systems have built in support for ZIP in similar manners to Windows and macOS.
The BMP file format or bitmap, is a raster graphics image file format used to store bitmap digital images, independently of the display device, especially on Microsoft Windows and OS/2 operating systems.
In bioinformatics and biochemistry, the FASTA format is a text-based format for representing either nucleotide sequences or amino acid (protein) sequences, in which nucleotides or amino acids are represented using single-letter codes.
The archiver, also known simply as ar, is a Unix utility that maintains groups of files as a single archive file. Today, ar
is generally used only to create and update static library files that the link editor or linker uses and for generating .deb packages for the Debian family; it can be used to create archives for any purpose, but has been largely replaced by tar
for purposes other than static libraries. An implementation of ar
is included as one of the GNU Binutils.
A FourCC is a sequence of four bytes used to uniquely identify data formats. It originated from the OSType or ResType metadata system used in classic Mac OS and was adopted for the Amiga/Electronic Arts Interchange File Format and derivatives. The idea was later reused to identify compressed data types in QuickTime and DirectShow.
The shapefile format is a geospatial vector data format for geographic information system (GIS) software. It is developed and regulated by Esri as a mostly open specification for data interoperability among Esri and other GIS software products. The shapefile format can spatially describe vector features: points, lines, and polygons, representing, for example, water wells, rivers, and lakes. Each item usually has attributes that describe it, such as name or temperature.
Real-Time Messaging Protocol (RTMP) is a communication protocol for streaming audio, video, and data over the Internet. Originally developed as a proprietary protocol by Macromedia for streaming between Flash Player and the Flash Communication Server, Adobe has released an incomplete version of the specification of the protocol for public use.
In bioinformatics, the general feature format is a file format used for describing genes and other features of DNA, RNA and protein sequences.
Action Message Format (AMF) is a binary format used to serialize object graphs such as ActionScript objects and XML, or send messages between an Adobe Flash client and a remote service, usually a Flash Media Server or third party alternatives. The Actionscript 3 language provides classes for encoding and decoding from the AMF format.
FASTQ format is a text-based format for storing both a biological sequence and its corresponding quality scores. Both the sequence letter and quality score are each encoded with a single ASCII character for brevity.
Pileup format is a text-based format for summarizing the base calls of aligned reads to a reference sequence. This format facilitates visual display of SNP/indel calling and alignment. It was first used by Tony Cox and Zemin Ning at the Wellcome Trust Sanger Institute, and became widely known through its implementation within the SAMtools software suite.
SAMtools is a set of utilities for interacting with and post-processing short DNA sequence read alignments in the SAM, BAM and CRAM formats, written by Heng Li. These files are generated as output by short read aligners like BWA. Both simple and advanced tools are provided, supporting complex tasks like variant calling and alignment viewing as well as sorting, indexing, data extraction and format conversion. SAM files can be very large, so compression is used to save space. SAM files are human-readable text files, and BAM files are simply their binary equivalent, whilst CRAM files are a restructured column-oriented binary container format. BAM files are typically compressed and more efficient for software to work with than SAM. SAMtools makes it possible to work directly with a compressed BAM file, without having to uncompress the whole file. Additionally, since the format for a SAM/BAM file is somewhat complex - containing reads, references, alignments, quality information, and user-specified annotations - SAMtools reduces the effort needed to use SAM/BAM files by hiding low-level details.
Ensembl Genomes is a scientific project to provide genome-scale data from non-vertebrate species.
Sequence Alignment Map (SAM) is a text-based format originally for storing biological sequences aligned to a reference sequence developed by Heng Li and Bob Handsaker et al. It was developed when the 1000 Genomes Project wanted to move away from the MAQ mapper format and decided to design a new format. The overall TAB-delimited flavour of the format came from an earlier format inspired by BLAT’s PSL. The name of SAM came from Gabor Marth from University of Utah, who originally had a format under the same name but with a different syntax more similar to a BLAST output. It is widely used for storing data, such as nucleotide sequences, generated by next generation sequencing technologies, and the standard has been broadened to include unmapped sequences. The format supports short and long reads (up to 128 Mbp) produced by different sequencing platforms and is used to hold mapped data within the Genome Analysis Toolkit (GATK) and across the Broad Institute, the Wellcome Sanger Institute, and throughout the 1000 Genomes Project.
Binary Alignment Map (BAM) is the comprehensive raw data of genome sequencing; it consists of the lossless, compressed binary representation of the Sequence Alignment Map-files.
Compressed Reference-oriented Alignment Map (CRAM) is a compressed columnar file format for storing biological sequences aligned to a reference sequence, initially devised by Markus Hsi-Yang Fritz et al.
ANNOVAR is a bioinformatics software tool for the interpretation and prioritization of single nucleotide variants (SNVs), insertions, deletions, and copy number variants (CNVs) of a given genome.
The BED format is a text file format used to store genomic regions as coordinates and associated annotations. The data are presented in the form of columns separated by spaces or tabs. This format was developed during the Human Genome Project and then adopted by other sequencing projects. As a result of this increasingly wide use, this format had already become a de facto standard in bioinformatics before a formal specification was written.