An Xbloc is a wave-dissipating concrete block (or "armour unit") designed to protect shores, harbour walls, seawalls, breakwaters and other coastal structures from the direct impact of incoming waves. The Xbloc model was designed and developed in 2001 by the Dutch firm Delta Marine Consultants, now called BAM Infraconsult, a subsidiary of the Royal BAM Group. Xbloc has been subjected to extensive research by several universities. [1]
Concrete armour units are generally applied in breakwaters and shore protections. The units are placed in a single layer as the outer layer of the coastal structure. This layer is called the armour layer. Its function is twofold: (1) to protect the finer material below it against severe wave action; (2) to dissipate the wave energy to reduce the wave run-up, overtopping and reflection. These functions require a heavy, but porous armour.
Common factors to apply single layer concrete armour units are:
Also compared to older concrete armour units, as e.g. tetrapod which are normally placed in double layer as for rock protection, modern single layer armour units (like the Xbloc and Accropode), involve significantly less concrete. Therefore, less construction material (cement, gravel) is required, [2] reducing costs and also the carbon footprint of coastal protection works. [3]
Like Xbloc, most of these blocks are commercial developments and patented [4] [5] as such, Xblocs are not produced by the patent holder, but are fabricated and installed by a contractor who in return pays a license fee. Such an agreement involves certain technical support activities to ensure the correct application of the protection system. The patent expires in 2023, but although after that date anyone can make a block with this shape, one is not allowed to call it Xbloc, because the name is a protected trademark.
The Xbloc armour unit derives its hydraulic stability from its self-weight and by interlocking with surrounding units. Due to the highly porous armour layer (layer porosity of almost 60%) constructed with Xbloc units, the energy of the incoming waves will be largely absorbed. The Xbloc armour layer is therefore able to protect the rock in the under layer from erosion due to waves. Besides empirical formulae derived from physical model testing, the interaction between breakwater elements (submerged or emerged) and waves as well as the filtration of the fluid into the porous breakwater has been investigated amongst others by MEDUS, based on RANS equations coupled with a RNG turbulence model. [6]
Xblocs are typically applied on an armour slope steepness between 3V:4H and 2V:3H. Unlike natural rock, the hydraulic stability does not increase at shallower slope inclinations, because, in that situation, the interlocking effect is reduced. Standard Xbloc sizes vary between 0.75m3 (significant wave height up to Hs = 3.35m) and 20m3 (Hs = 10.0m). It is noted that the given relation between design wave height and volume size is valid for the concept stage only. Further parameters as foreshore slope, crest configuration, construction equipment, etc. can have an important effect on the recommended unit size. [7] For detailed design, in particular for non standard situations, physical model tests are essential and normally carried out to confirm overall stability and functional performance of a breakwater (wave overtopping and/ or wave penetration).
The effect of interlocking is apparent when comparing a rock revetment with a modern single layer unit for average boundary conditions, while taking into account the lower specific density of concrete compared to most natural rock commonly used in breakwater construction. Assuming that natural rock would be placed at identical slope steepness, the individual rock weight would require to be three times as high, compared to Xbloc units. Rock is generally to be placed as double layer, thus the volume of armour material which needs to be quarried, stored, handled, transported and installed can be enormous for a larger breakwater exposed to significant wave action. Due to the interlocking effect the weight, and thus the volume, of single layer armour units is considerably less compared to an armour consisting entirely of rock. In addition, units are normally fabricated near or at project site, so that transport issues are less critical.
The Xbloc consists of non-reinforced concrete, similar to other single layer armour units. Ordinary concrete C25/30 is normally appropriate for the production of Xbloc armour units. However, often concrete of higher strength is applied for other reasons, e.g. early strength for faster de-moulding, ice loads, etc. By omitting reinforcement, time and costs are cut and the armour units are less vulnerable to long term corrosion damage. The optimal shape of a single layer armour unit combines the robustness of a compact concrete body with the slenderness required for interlocking. The structural integrity is normally confirmed by finite element calculations (FEM) and prototype drop tests.
Although both wooden and steel moulds can be used to construct the Xbloc formwork, steel moulds are preferred as they can be used repeatedly to produce large numbers of armour units. Various mould designs, consisting of 2 sections, are used. The moulds are either vertically or horizontally assembled. Pouring and compaction of concrete is done simultaneously. An appropriate formwork design is facilitating the stripping of the moulds at an early stage and largely prevents honey combing, surface bubbles and striking damage.
Due to the shape of the Xbloc unit, relatively simple formwork can be used which is made of a limited number of different steel plates. Since a single Xbloc unit can weigh up to 45 tons, the construction is done as close as possible to the area of application. [8]
In contrast to the placement of other interlocking concrete blocks, the Xbloc unit does not require stringent specifications about the orientation of each unit on a breakwater slope. Because of the shape of the Xbloc, each of the 6 sides of the unit is efficiently interlocking. Hence, the blocks easily find a position that fully utilizes the interlocking mechanism. This increases the efficiency of placing armour units on a slope. [9] Due to the random structure and high porosity of an Xbloc breakwater, an artificial reef habitat is created for marine fauna and flora.
DMC came to the market in 2018 with the XblocPlus. This is not merely an improved version of the Xbloc, rather it is a block that functions differently, and has its own advantages and disadvantages. The XblocPlus needs to be placed regularly and, has characteristics found in placed blocks such as natural basaltic columns or concrete placed blocks like Basalton. [10] DMC saw opportunities for this block in the Afsluitdijk improvement that began in 2018. Here this block is used in the wave impact zone. The block in this usage is called the ‘Levvel-block’, after the joint-venture that improves the Afsluitdijk. The Basalton Quattroblok is placed in the wave run-up zone on the Afsluitdijk. The XblocPlus is also used in the Vistula Spit canal in Poland. [11]
The Afsluitdijk is a major dam and causeway in the Netherlands. It was constructed between 1927 and 1932 and runs from Den Oever in North Holland province to the village of Zurich in Friesland province, over a length of 32 kilometres (20 mi) and a width of 90 metres (300 ft), at an initial height above Amsterdam Ordnance Datum of between 6.7 metres (22 ft) along the section at Friesland, and 7.4 metres (24 ft) where it crosses the deep channel of the Vlieter. The height at the greater sea depths west of Friesland was required to be a minimum of 7 metres everywhere when originally constructed.
A groyne is a rigid hydraulic structure built perpendicularly from an ocean shore or a river bank, interrupting water flow and limiting the movement of sediment. It is usually made out of wood, concrete, or stone. In the ocean, groynes create beaches, prevent beach erosion caused by longshore drift where this is the dominant process and facilitate beach nourishment. There is also often cross-shore movement which if longer than the groyne will limit its effectiveness. In a river, groynes slow down the process of erosion and prevent ice-jamming, which in turn aids navigation.
A breakwater is a permanent structure constructed at a coastal area to protect against tides, currents, waves, and storm surges. Breakwaters have been built since Antiquity to protect anchorages, helping isolate vessels from marine hazards such as wind-driven waves. A breakwater, also known in some contexts as a jetty or a mole, may be connected to land or freestanding, and may contain a walkway or road for vehicle access.
A paver is a paving stone, tile, brick or brick-like piece of concrete commonly used as exterior flooring. They are generally placed on top of a foundation which is made of layers of compacted stone and sand. The pavers are placed in the desired pattern and the space between pavers is then filled with a polymeric sand. No actual adhesive or retaining method is used other than the weight of the paver itself except edging. Pavers can be used to make roads, driveways, patios, walkways and other outdoor platforms.
A revetment in stream restoration, river engineering or coastal engineering is a facing of impact-resistant material applied to a bank or wall in order to absorb the energy of incoming water and protect it from erosion. River or coastal revetments are usually built to preserve the existing uses of the shoreline and to protect the slope.
Riprap, also known as rip rap, rip-rap, shot rock, rock armour or rubble, is human-placed rock or other material used to protect shoreline structures against scour and water, wave, or ice erosion. Riprap is used to armor shorelines, streambeds, bridge abutments, foundational infrastructure supports and other shoreline structures against erosion. Common rock types used include granite and modular concrete blocks. Rubble from building and paving demolition is sometimes used, as well as specifically designed structures called tetrapods or similar concrete blocks. Riprap is also used underwater to cap immersed tubes sunken on the seabed to be joined into an undersea tunnel.
Formwork is molds into which concrete or similar materials are either precast or cast-in-place. In the context of concrete construction, the falsework supports the shuttering molds. In specialty applications formwork may be permanently incorporated into the final structure, adding insulation or helping reinforce the finished structure.
Coastal management is defence against flooding and erosion, and techniques that stop erosion to claim lands. Protection against rising sea levels in the 21st century is crucial, as sea level rise accelerates due to climate change. Changes in sea level damage beaches and coastal systems are expected to rise at an increasing rate, causing coastal sediments to be disturbed by tidal energy.
A dolos is a wave-dissipating concrete block used in great numbers as a form of coastal management. It is a type of tetrapod. Weighing up to 8 tonnes, dolosse are used to build revetments for protection against the erosive force of waves from a body of water. The dolos was invented in 1963, and was first deployed in 1964 on the breakwater of East London, a South African port city.
Accropode blocks are wave-dissipating concrete blocks designed to resist the action of waves on breakwaters and coastal structures.
A-Jacks are a commercially made concrete product used in both open channel and coastal applications. They consist of two concrete T-shaped pieces joined perpendicularly at the middle, forming six legs. They are a product owned and patented worldwide by Poseidon Alliance Ltd.
A tetrapod is a form of wave-dissipating concrete block used to prevent erosion caused by weather and longshore drift, primarily to enforce coastal structures such as seawalls and breakwaters. Tetrapods are made of concrete, and use a tetrahedral shape to dissipate the force of incoming waves by allowing water to flow around rather than against them, and to reduce displacement by interlocking.
Beach evolution occurs at the shoreline where sea, lake or river water is eroding the land. Beaches exist where sand accumulated from centuries-old, recurrent processes that erode rocky and sedimentary material into sand deposits. River deltas deposit silt from upriver, accreting at the river's outlet to extend lake or ocean shorelines. Catastrophic events such as tsunamis, hurricanes, and storm surges accelerate beach erosion.
Hudson's equation, also known as Hudson formula, is an equation used by coastal engineers to calculate the minimum size of riprap (armourstone) required to provide satisfactory stability characteristics for rubble structures such as breakwaters under attack from storm wave conditions.
The Port of Ngqura is a deepwater port on the east coast of South Africa, 20 km northeast of Gqeberha. It was authorised by an act of parliament in 2002, construction started in September 2002 and the port became operational in October 2009 when the MSC Catania docked at the port.
KOLOS is a wave-dissipating concrete block intended to protect coastal structures like seawalls and breakwaters from the ocean waves. These blocks were developed in India by Navayuga Engineering Company and were first adopted for the breakwaters of the Krishnapatnam Port along the East coast of India.
In fluid dynamics, the Iribarren number or Iribarren parameter – also known as the surf similarity parameter and breaker parameter – is a dimensionless parameter used to model several effects of (breaking) surface gravity waves on beaches and coastal structures. The parameter is named after the Spanish engineer Ramón Iribarren Cavanilles (1900–1967), who introduced it to describe the occurrence of wave breaking on sloping beaches. The parameter used to describe breaking wave types on beaches; or wave run-up on – and reflection by – beaches, breakwaters and dikes.
A wave-dissipating concrete block is a naturally or manually interlocking concrete structure designed and employed to minimize the effects of wave action upon shores and shoreline structures, such as quays and jetties.
Ramón Iribarren CavanillesIng.D was a Spanish civil engineer and professor of ports at the School of Civil Engineering in Madrid. He was chairman of the Spanish delegation to the Permanent International Association of Navigation Congresses (PIANC) and was elected as an academic at the Spanish Royal Academy of Sciences, although he did not take up the latter position. He made notable contributions in the field of coastal engineering, including methods for the calculation of breakwater stability and research which led to the development of the Iribarren number.
Wave overtopping is the time-averaged amount of water that is discharged per structure length by waves over a structure such as a breakwater, revetment or dike which has a crest height above still water level.