Completely randomized design

Last updated

In the design of experiments, completely randomized designs are for studying the effects of one primary factor without the need to take other nuisance variables into account. This article describes completely randomized designs that have one primary factor. The experiment compares the values of a response variable based on the different levels of that primary factor. For completely randomized designs, the levels of the primary factor are randomly assigned to the experimental units.

Contents

Randomization

By randomization, that is to say the run sequence of the experimental units is determined randomly. For example, if there are 3 levels of the primary factor with each level to be run 2 times, then there are 6! (where ! denotes factorial) possible run sequences (or ways to order the experimental trials). Because of the replication, the number of unique orderings is 90 (since 90 = 6!/(2!*2!*2!)). An example of an unrandomized design would be to always run 2 replications for the first level, then 2 for the second level, and finally 2 for the third level. To randomize the runs, one way would be to put 6 slips of paper in a box with 2 having level 1, 2 having level 2, and 2 having level 3. Before each run, one of the slips would be drawn blindly from the box and the level selected would be used for the next run of the experiment.

In practice, the randomization is typically performed by a computer program. However, the randomization can also be generated from random number tables or by some physical mechanism (e.g., drawing the slips of paper).

Three key numbers

All completely randomized designs with one primary factor are defined by 3 numbers:

and the total sample size (number of runs) is N = k×L×n. Balance dictates that the number of replications be the same at each level of the factor (this will maximize the sensitivity of subsequent statistical t- (or F-) tests).

Example

A typical example of a completely randomized design is the following:

Sample randomized sequence of trials

The randomized sequence of trials might look like: X1: 3, 1, 4, 2, 2, 1, 3, 4, 1, 2, 4, 3

Note that in this example there are 12!/(3!*3!*3!*3!) = 369,600 ways to run the experiment, all equally likely to be picked by a randomization procedure.

Model for a completely randomized design

The model for the response is

with

Estimates and statistical tests

Estimating and testing model factor levels

with = average of all Y for which X1 = i.

Statistical tests for levels of X1 are those used for a one-way ANOVA and are detailed in the article on analysis of variance.

Bibliography

See also

PD-icon.svg This article incorporates  public domain material from the National Institute of Standards and Technology website https://www.nist.gov .

Related Research Articles

Analysis of variance (ANOVA) is a collection of statistical models and their associated estimation procedures used to analyze the differences among group means in a sample. ANOVA was developed by the statistician Ronald Fisher. The ANOVA is based on the law of total variance, where the observed variance in a particular variable is partitioned into components attributable to different sources of variation. In its simplest form, ANOVA provides a statistical test of whether two or more population means are equal, and therefore generalizes the t-test beyond two means.

Design of experiments Design of tasks set to uncover answers

The design of experiments is the design of any task that aims to describe and explain the variation of information under conditions that are hypothesized to reflect the variation. The term is generally associated with experiments in which the design introduces conditions that directly affect the variation, but may also refer to the design of quasi-experiments, in which natural conditions that influence the variation are selected for observation.

Statistical inference

Statistical inference is the process of using data analysis to deduce properties of an underlying distribution of probability. Inferential statistical analysis infers properties of a population, for example by testing hypotheses and deriving estimates. It is assumed that the observed data set is sampled from a larger population.

The theory of statistics provides a basis for the whole range of techniques, in both study design and data analysis, that are used within applications of statistics. The theory covers approaches to statistical-decision problems and to statistical inference, and the actions and deductions that satisfy the basic principles stated for these different approaches. Within a given approach, statistical theory gives ways of comparing statistical procedures; it can find a best possible procedure within a given context for given statistical problems, or can provide guidance on the choice between alternative procedures.

Latin square Square array with symbols that each occur once per row and column

In combinatorics and in experimental design, a Latin square is an n × n array filled with n different symbols, each occurring exactly once in each row and exactly once in each column. An example of a 3×3 Latin square is

Experiment scientific procedure performed to validate a hypothesis

An experiment is a procedure carried out to support, refute, or validate a hypothesis. Experiments provide insight into cause-and-effect by demonstrating what outcome occurs when a particular factor is manipulated. Experiments vary greatly in goal and scale, but always rely on repeatable procedure and logical analysis of the results. There also exists natural experimental studies.

Interaction (statistics)

In statistics, an interaction may arise when considering the relationship among three or more variables, and describes a situation in which the effect of one causal variable on an outcome depends on the state of a second causal variable. Although commonly thought of in terms of causal relationships, the concept of an interaction can also describe non-causal associations. Interactions are often considered in the context of regression analyses or factorial experiments.

In the statistical theory of the design of experiments, blocking is the arranging of experimental units in groups (blocks) that are similar to one another.

Factorial experiment

In statistics, a full factorial experiment is an experiment whose design consists of two or more factors, each with discrete possible values or "levels", and whose experimental units take on all possible combinations of these levels across all such factors. A full factorial design may also be called a fully crossed design. Such an experiment allows the investigator to study the effect of each factor on the response variable, as well as the effects of interactions between factors on the response variable.

Random assignment or random placement is an experimental technique for assigning human participants or animal subjects to different groups in an experiment using randomization, such as by a chance procedure or a random number generator. This ensures that each participant or subject has an equal chance of being placed in any group. Random assignment of participants helps to ensure that any differences between and within the groups are not systematic at the outset of the experiment. Thus, any differences between groups recorded at the end of the experiment can be more confidently attributed to the experimental procedures or treatment.

Randomized experiment Experiment using randomness in some aspect, usually to aid in removal of bias

In science, randomized experiments are the experiments that allow the greatest reliability and validity of statistical estimates of treatment effects. Randomization-based inference is especially important in experimental design and in survey sampling.

In statistics, fractional factorial designs are experimental designs consisting of a carefully chosen subset (fraction) of the experimental runs of a full factorial design. The subset is chosen so as to exploit the sparsity-of-effects principle to expose information about the most important features of the problem studied, while using a fraction of the effort of a full factorial design in terms of experimental runs and resources. In other words, it makes use of the fact that many experiments in full factorial design are often redundant, giving little or no new information about the system.

In the design of experiments and analysis of variance, a main effect is the effect of an independent variable on a dependent variable averaged across the levels of any other independent variables. The term is frequently used in the context of factorial designs and regression models to distinguish main effects from interaction effects.

In statistics, one-way analysis of variance is a technique that can be used to compare means of two or more samples. This technique can be used only for numerical response data, the "Y", usually one variable, and numerical or (usually) categorical input data, the "X", always one variable, hence "one-way".

Algebraic statistics is the use of algebra to advance statistics. Algebra has been useful for experimental design, parameter estimation, and hypothesis testing.

In statistics, restricted randomization occurs in the design of experiments and in particular in the context of randomized experiments and randomized controlled trials. Restricted randomization allows intuitively poor allocations of treatments to experimental units to be avoided, while retaining the theoretical benefits of randomization. For example, in a clinical trial of a new proposed treatment of obesity compared to a control, an experimenter would want to avoid outcomes of the randomization in which the new treatment was allocated only to the heaviest patients.

The following is a glossary of terms. It is not intended to be all-inclusive.

Oscar Kempthorne was a British statistician and geneticist known for his research on randomization-analysis and the design of experiments, which had wide influence on research in agriculture, genetics, and other areas of science.

In randomized statistical experiments, generalized randomized block designs (GRBDs) are used to study the interaction between blocks and treatments. For a GRBD, each treatment is replicated at least two times in each block; this replication allows the estimation and testing of an interaction term in the linear model.

In statistics, the two-way analysis of variance (ANOVA) is an extension of the one-way ANOVA that examines the influence of two different categorical independent variables on one continuous dependent variable. The two-way ANOVA not only aims at assessing the main effect of each independent variable but also if there is any interaction between them.