Hypoexponential distribution

Last updated
Hypoexponential
Parameters rates (real)
Support
PDF Expressed as a phase-type distribution

Has no other simple form; see article for details
CDF Expressed as a phase-type distribution
Mean
Median General closed form does not exist [1]
Mode if , for all k
Variance
Skewness
Ex. kurtosis no simple closed form
MGF
CF

In probability theory the hypoexponential distribution or the generalized Erlang distribution is a continuous distribution, that has found use in the same fields as the Erlang distribution, such as queueing theory, teletraffic engineering and more generally in stochastic processes. It is called the hypoexponetial distribution as it has a coefficient of variation less than one, compared to the hyper-exponential distribution which has coefficient of variation greater than one and the exponential distribution which has coefficient of variation of one.

Contents

Overview

The Erlang distribution is a series of k exponential distributions all with rate . The hypoexponential is a series of k exponential distributions each with their own rate , the rate of the exponential distribution. If we have k independently distributed exponential random variables , then the random variable,

is hypoexponentially distributed. The hypoexponential has a minimum coefficient of variation of .

Relation to the phase-type distribution

As a result of the definition it is easier to consider this distribution as a special case of the phase-type distribution. [2] The phase-type distribution is the time to absorption of a finite state Markov process. If we have a k+1 state process, where the first k states are transient and the state k+1 is an absorbing state, then the distribution of time from the start of the process until the absorbing state is reached is phase-type distributed. This becomes the hypoexponential if we start in the first 1 and move skip-free from state i to i+1 with rate until state k transitions with rate to the absorbing state k+1. This can be written in the form of a subgenerator matrix,

For simplicity denote the above matrix . If the probability of starting in each of the k states is

then

Two parameter case

Where the distribution has two parameters () the explicit forms of the probability functions and the associated statistics are: [3]

CDF:

PDF:

Mean:

Variance:

Coefficient of variation:

The coefficient of variation is always less than 1.

Given the sample mean () and sample coefficient of variation (), the parameters and can be estimated as follows:

These estimators can be derived from the methods of moments by setting and .

The resulting parameters and are real values if .

Characterization

A random variable has cumulative distribution function given by,

and density function,

where is a column vector of ones of the size k and is the matrix exponential of A. When for all , the density function can be written as

where are the Lagrange basis polynomials associated with the points .

The distribution has Laplace transform of

Which can be used to find moments,

General case

In the general case where there are distinct sums of exponential distributions with rates and a number of terms in each sum equals to respectively. The cumulative distribution function for is given by

with

with the additional convention . [4]

Uses

This distribution has been used in population genetics, [5] cell biology, [6] [7] and queuing theory. [8] [9]

See also

Related Research Articles

<span class="mw-page-title-main">Lorentz transformation</span> Family of linear transformations

In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.

<span class="mw-page-title-main">Weibull distribution</span> Continuous probability distribution

In probability theory and statistics, the Weibull distribution is a continuous probability distribution. It models a broad range of random variables, largely in the nature of a time to failure or time between events. Examples are maximum one-day rainfalls and the time a user spends on a web page.

Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

In analytical mechanics, generalized coordinates are a set of parameters used to represent the state of a system in a configuration space. These parameters must uniquely define the configuration of the system relative to a reference state. The generalized velocities are the time derivatives of the generalized coordinates of the system. The adjective "generalized" distinguishes these parameters from the traditional use of the term "coordinate" to refer to Cartesian coordinates.

In physics and astronomy, the Reissner–Nordström metric is a static solution to the Einstein–Maxwell field equations, which corresponds to the gravitational field of a charged, non-rotating, spherically symmetric body of mass M. The analogous solution for a charged, rotating body is given by the Kerr–Newman metric.

In statistics, the theory of minimum norm quadratic unbiased estimation (MINQUE) was developed by C. R. Rao. MINQUE is a theory alongside other estimation methods in estimation theory, such as the method of moments or maximum likelihood estimation. Similar to the theory of best linear unbiased estimation, MINQUE is specifically concerned with linear regression models. The method was originally conceived to estimate heteroscedastic error variance in multiple linear regression. MINQUE estimators also provide an alternative to maximum likelihood estimators or restricted maximum likelihood estimators for variance components in mixed effects models. MINQUE estimators are quadratic forms of the response variable and are used to estimate a linear function of the variances.

In statistics, the Vuong closeness test is a likelihood-ratio-based test for model selection using the Kullback–Leibler information criterion. This statistic makes probabilistic statements about two models. They can be nested, strictly non-nested or partially non-nested. The statistic tests the null hypothesis that the two models are equally close to the true data generating process, against the alternative that one model is closer. It cannot make any decision whether the "closer" model is the true model.

The principle of detailed balance can be used in kinetic systems which are decomposed into elementary processes. It states that at equilibrium, each elementary process is in equilibrium with its reverse process.

The Lanczos algorithm is an iterative method devised by Cornelius Lanczos that is an adaptation of power methods to find the "most useful" eigenvalues and eigenvectors of an Hermitian matrix, where is often but not necessarily much smaller than . Although computationally efficient in principle, the method as initially formulated was not useful, due to its numerical instability.

A phase-type distribution is a probability distribution constructed by a convolution or mixture of exponential distributions. It results from a system of one or more inter-related Poisson processes occurring in sequence, or phases. The sequence in which each of the phases occurs may itself be a stochastic process. The distribution can be represented by a random variable describing the time until absorption of a Markov process with one absorbing state. Each of the states of the Markov process represents one of the phases.

In matrix theory, Sylvester's formula or Sylvester's matrix theorem (named after J. J. Sylvester) or Lagrange−Sylvester interpolation expresses an analytic function f(A) of a matrix A as a polynomial in A, in terms of the eigenvalues and eigenvectors of A. It states that

In probability and statistics, a natural exponential family (NEF) is a class of probability distributions that is a special case of an exponential family (EF).

In probability and statistics, the class of exponential dispersion models (EDM), also called exponential dispersion family (EDF), is a set of probability distributions that represents a generalisation of the natural exponential family. Exponential dispersion models play an important role in statistical theory, in particular in generalized linear models because they have a special structure which enables deductions to be made about appropriate statistical inference.

The derivatives of scalars, vectors, and second-order tensors with respect to second-order tensors are of considerable use in continuum mechanics. These derivatives are used in the theories of nonlinear elasticity and plasticity, particularly in the design of algorithms for numerical simulations.

Mechanics of planar particle motion is the analysis of the motion of particles gravitationally attracted to one another observed from non-inertial reference frames and the generalization of this problem to planetary motion. This type of analysis is closely related to centrifugal force, two-body problem, orbit and Kepler's laws of planetary motion. The mechanics of planar particle motion fall in the general field of analytical dynamics, and helps determine orbits from the given force laws. This article is focused more on the kinematic issues surrounding planar motion, which are the determination of the forces necessary to result in a certain trajectory given the particle trajectory.

<span class="mw-page-title-main">Lagrangian mechanics</span> Formulation of classical mechanics

In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the stationary-action principle. It was introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in his presentation to the Turin Academy of Science in 1760 culminating in his 1788 grand opus, Mécanique analytique.

<span class="mw-page-title-main">Generalized chi-squared distribution</span>

In probability theory and statistics, the generalized chi-squared distribution is the distribution of a quadratic form of a multinormal variable, or a linear combination of different normal variables and squares of normal variables. Equivalently, it is also a linear sum of independent noncentral chi-square variables and a normal variable. There are several other such generalizations for which the same term is sometimes used; some of them are special cases of the family discussed here, for example the gamma distribution.

<span class="mw-page-title-main">Wrapped exponential distribution</span> Probability distribution

In probability theory and directional statistics, a wrapped exponential distribution is a wrapped probability distribution that results from the "wrapping" of the exponential distribution around the unit circle.

<span class="mw-page-title-main">Wrapped asymmetric Laplace distribution</span>

In probability theory and directional statistics, a wrapped asymmetric Laplace distribution is a wrapped probability distribution that results from the "wrapping" of the asymmetric Laplace distribution around the unit circle. For the symmetric case (asymmetry parameter κ = 1), the distribution becomes a wrapped Laplace distribution. The distribution of the ratio of two circular variates (Z) from two different wrapped exponential distributions will have a wrapped asymmetric Laplace distribution. These distributions find application in stochastic modelling of financial data.

The quantum Fisher information is a central quantity in quantum metrology and is the quantum analogue of the classical Fisher information. The quantum Fisher information of a state with respect to the observable is defined as

References

  1. "HypoexponentialDistribution". Wolfram Language & System Documentation Center. Wolfram. 2012. Retrieved 27 February 2024.
  2. Legros, Benjamin; Jouini, Oualid (2015). "A linear algebraic approach for the computation of sums of Erlang random variables". Applied Mathematical Modelling. 39 (16): 4971–4977. doi: 10.1016/j.apm.2015.04.013 . S2CID   123953222 .
  3. Bolch, Gunter; Greiner, Stefan; de Meer, Hermann; Trivedi, Kishor S. (2006). Queuing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications (2nd ed.). Wiley. pp. 24–25. doi:10.1002/0471791571. ISBN   978-0-471-79157-7. S2CID   23991375.
  4. Amari, Suprasad V.; Misra, Ravindra B. (1997). "Closed-form expressions for distribution of sum of exponential random variables". IEEE Transactions on Reliability. 46 (4): 519–522. doi:10.1109/24.693785. S2CID   122752939.
  5. Strimmer, Korbinian; Pybus, Oliver G. (2001). "Exploring the demographic history of DNA sequences using the generalized skyline plot". Molecular Biology and Evolution . 18 (12): 2298–2305. doi: 10.1093/oxfordjournals.molbev.a003776 . PMID   11719579. S2CID   29866032 .
  6. Yates, Christian A.; Ford, Matthew J.; Mort, Richard L. (2017). "A multi-stage representation of cell proliferation as a Markov process". Bulletin of Mathematical Biology. 79 (12): 2905–2928. arXiv: 1705.09718 . doi: 10.1007/s11538-017-0356-4 . PMC   5709504 . PMID   29030804. S2CID   11984453 .
  7. Gavagnin, Enrico; Ford, Matthew J.; Mort, Richard L.; Rogers, Tim; Yates, Christian A. (2019). "The invasion speed of cell migration models with realistic cell cycle time distributions". Journal of Theoretical Biology . 481: 91–99. arXiv: 1806.03140 . doi:10.1016/j.jtbi.2018.09.010. PMID   30219568. S2CID   47015362 .
  8. Călinescu, Malenia (August 2009). "Forecasting and capacity planning for ambulance services" (PDF). Faculty of Sciences. Vrije Universiteit Amsterdam. Archived from the original (PDF) on 15 February 2010.
  9. Bekker, René; Koeleman, Paulien M. (2011). "Scheduling admissions and reducing variability in bed demand". Health Care Management Science. 14 (3): 237–249. doi: 10.1007/s10729-011-9163-x . PMC   3158339 . PMID   21667090. S2CID   263973113 .

Further reading