Manganese(II) oxide

Last updated
Manganese(II) oxide
Manganese(II)-oxide-xtal-3D-SF.png
Names
IUPAC name
Manganese(II) oxide
Other names
Manganous oxide
Manganosite
manganese monoxide
oxomanganese
Identifiers
ECHA InfoCard 100.014.269 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
RTECS number
  • OP0900000
UNII
Properties
MnO
Molar mass 70.9374 g/mol
Appearancegreen crystals or powder
Density 5.43 g/cm3
Melting point 1,945 °C (3,533 °F; 2,218 K)
insoluble
Solubility soluble in acid
+4850.0·10−6 cm3/mol
2.16
Structure
Halite (cubic), cF8
Fm3m, No. 225
Octahedral (Mn2+); octahedral (O2−)
Thermochemistry
Std molar
entropy
(S298)
60 J·mol−1·K−1 [1]
−385 kJ·mol−1 [1]
Hazards
NFPA 704 (fire diamond)
NFPA 704.svgHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1
0
0
Flash point Non-flammable
Related compounds
Other anions
Manganese(II) fluoride
Manganese(II) sulfide
Manganese(II) selenide
Manganese(II) telluride
Other cations
Iron(II) oxide
Related manganese oxides
Manganese(II,III) oxide
Manganese(III) oxide
Manganese dioxide
Manganese heptoxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Manganese(II) oxide is an inorganic compound with chemical formula MnO. [2] It forms green crystals. The compound is produced on a large scale as a component of fertilizers and food additives.

Contents

Structure, stoichiometry, reactivity

Like many monoxides, MnO adopts the rock salt structure, where cations and anions are both octahedrally coordinated. Also like many oxides, manganese(II) oxide is often nonstoichiometric: its composition can vary from MnO to MnO1.045. [3]

Below 118 K MnO is antiferromagnetic. [3] MnO has the distinction of being one of the first compounds [4] to have its magnetic structure determined by neutron diffraction, the report appearing in 1951. [5] This study showed that the Mn2+ ions form a face centered cubic magnetic sub-lattice where there are ferromagnetically coupled sheets that are anti-parallel with adjacent sheets.

Manganese(II) oxide undergoes the chemical reactions typical of an ionic oxide. Upon treatment with acids, it converts to the corresponding manganese(II) salt and water. [3] Oxidation of manganese(II) oxide gives manganese(III) oxide.

Preparation and occurrence

MnO occurs in nature as the rare mineral manganosite.
It is prepared commercially by reduction of MnO2 with hydrogen, carbon monoxide or methane, e.g.: [2]

MnO2 + H2 → MnO + H2O
MnO2 + CO → MnO + CO2

Upon heating to 450 °C, manganese(II) nitrate gives a mixture of oxides, MnO2-x, which can be reduced to the monoxide with hydrogen at ≥750 °C. [6] MnO is particularly stable and resists further reduction. [7] MnO can also be prepared by heating the carbonate: [8]

MnCO3 → MnO + CO2

This calcining process is conducted anaerobically, lest Mn2O3 form.

An alternative route, mostly for demonstration purposes, is the oxalate method, which also applicable to the synthesis of ferrous oxide and stannous oxide. Upon heating in an oxygen-free atmosphere (usually CO2), manganese(II) oxalate decomposes into MnO: [9]

MnC2O4·2H2O → MnO + CO2 + CO + 2 H2O

Applications

Together with manganese sulfate, MnO is a component of fertilizers and food additives. Many thousands of tons are consumed annually for this purpose. Other uses include: a catalyst in the manufacture of allyl alcohol, ceramics, paints, colored glass, bleaching tallow and textile printing. [2]

Related Research Articles

<span class="mw-page-title-main">Oxide</span> Chemical compound where oxygen atoms are combined with atoms of other elements

An oxide is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– ion with oxygen in the oxidation state of −2. Most of the Earth's crust consists of oxides. Even materials considered pure elements often develop an oxide coating. For example, aluminium foil develops a thin skin of Al2O3 that protects the foil from further oxidation.

<span class="mw-page-title-main">Manganese dioxide</span> Chemical compound

Manganese dioxide is the inorganic compound with the formula MnO
2
. This blackish or brown solid occurs naturally as the mineral pyrolusite, which is the main ore of manganese and a component of manganese nodules. The principal use for MnO
2
is for dry-cell batteries, such as the alkaline battery and the zinc–carbon battery. MnO
2
is also used as a pigment and as a precursor to other manganese compounds, such as KMnO
4
. It is used as a reagent in organic synthesis, for example, for the oxidation of allylic alcohols. MnO
2
has an α-polymorph that can incorporate a variety of atoms in the "tunnels" or "channels" between the manganese oxide octahedra. There is considerable interest in α-MnO
2
as a possible cathode for lithium-ion batteries.

<span class="mw-page-title-main">Lead(II) oxide</span> Chemical compound

Lead(II) oxide, also called lead monoxide, is the inorganic compound with the molecular formula PbO. PbO occurs in two polymorphs: litharge having a tetragonal crystal structure, and massicot having an orthorhombic crystal structure. Modern applications for PbO are mostly in lead-based industrial glass and industrial ceramics, including computer components. It is an amphoteric oxide.

<span class="mw-page-title-main">Copper(II) oxide</span> Chemical compound – an oxide of copper with formula CuO

Copper(II) oxide or cupric oxide is an inorganic compound with the formula CuO. A black solid, it is one of the two stable oxides of copper, the other being Cu2O or copper(I) oxide (cuprous oxide). As a mineral, it is known as tenorite. It is a product of copper mining and the precursor to many other copper-containing products and chemical compounds.

<span class="mw-page-title-main">Manganese(II) chloride</span> Chemical compound

Manganese(II) chloride is the dichloride salt of manganese, MnCl2. This inorganic chemical exists in the anhydrous form, as well as the dihydrate (MnCl2·2H2O) and tetrahydrate (MnCl2·4H2O), with the tetrahydrate being the most common form. Like many Mn(II) species, these salts are pink, with the paleness of the color being characteristic of transition metal complexes with high spin d5 configurations.

<span class="mw-page-title-main">Sodium peroxide</span> Chemical compound

Sodium peroxide is an inorganic compound with the formula Na2O2. This yellowish solid is the product of sodium ignited in excess oxygen. It is a strong base. This metal peroxide exists in several hydrates and peroxyhydrates including Na2O2·2H2O2·4H2O, Na2O2·2H2O, Na2O2·2H2O2, and Na2O2·8H2O. The octahydrate, which is simple to prepare, is white, in contrast to the anhydrous material.

<span class="mw-page-title-main">Sodium manganate</span> Chemical compound

Sodium manganate is the inorganic compound with the formula Na2Mn O4. This deep green solid is a rarely encountered analogue of the related salt K2MnO4. Sodium manganate is rare because it cannot be readily prepared from the oxidation of manganese dioxide and sodium hydroxide. Instead this oxidation reaction tends to stop at producing sodium hypomanganate, Na3MnO4, and even this Mn(V) salt is unstable in solution. Sodium manganate can be produced by reduction of sodium permanganate under basic conditions:

<span class="mw-page-title-main">Chromium(III) oxide</span> Chemical compound

Chromium(III) oxide is an inorganic compound with the formula Cr
2
O
3
. It is one of the principal oxides of chromium and is used as a pigment. In nature, it occurs as the rare mineral eskolaite.

<span class="mw-page-title-main">Manganese(II) carbonate</span> Chemical compound

Manganese carbonate is a compound with the chemical formula MnCO3. Manganese carbonate occurs naturally as the mineral rhodochrosite but it is typically produced industrially. It is a pale pink, water-insoluble solid. Approximately 20,000 metric tonnes were produced in 2005.

<span class="mw-page-title-main">Potassium manganate</span> Chemical compound

Potassium manganate is the inorganic compound with the formula K2MnO4. This green-colored salt is an intermediate in the industrial synthesis of potassium permanganate, a common chemical. Occasionally, potassium manganate and potassium permanganate are confused, but each compound's properties are distinct.

Potassium hypomanganate is the inorganic compound with the formula K3MnO4. Also known as potassium manganate(V), this bright blue solid is a rare example of a salt with the hypomanganate or manganate(V) anion, where the manganese atom is in the +5 oxidation state. It is an intermediate in the production of potassium permanganate and the industrially most important Mn(V) compound.

<span class="mw-page-title-main">Cobalt(II) oxide</span> Chemical compound

Cobalt(II) oxide is an inorganic compound that has been described as an olive-green or gray solid. It is used extensively in the ceramics industry as an additive to create blue-colored glazes and enamels, as well as in the chemical industry for producing cobalt(II) salts. A related material is cobalt(II,III) oxide, a black solid with the formula Co3O4.

<span class="mw-page-title-main">Rhenium(VII) oxide</span> Chemical compound

Rhenium(VII) oxide is the inorganic compound with the formula Re2O7. This yellowish solid is the anhydride of HOReO3. Perrhenic acid, Re2O7·2H2O, is closely related to Re2O7. Re2O7 is the raw material for all rhenium compounds, being the volatile fraction obtained upon roasting the host ore.

<span class="mw-page-title-main">Sodium permanganate</span> Chemical compound

Sodium permanganate is the inorganic compound with the formula NaMnO4. It is closely related to the more commonly encountered potassium permanganate, but it is generally less desirable, because it is more expensive to produce. It is mainly available as the monohydrate. This salt absorbs water from the atmosphere and has a low melting point. Being about 15 times more soluble than KMnO4, sodium permanganate finds some applications where very high concentrations of MnO4 are sought.

In chemistry, carbonylation refers to reactions that introduce carbon monoxide (CO) into organic and inorganic substrates. Carbon monoxide is abundantly available and conveniently reactive, so it is widely used as a reactant in industrial chemistry. The term carbonylation also refers to oxidation of protein side chains.

<span class="mw-page-title-main">Cobalt(II) carbonate</span> Chemical compound

Cobalt(II) carbonate is the inorganic compound with the formula CoCO3. This reddish paramagnetic solid is an intermediate in the hydrometallurgical purification of cobalt from its ores. It is an inorganic pigment, and a precursor to catalysts. Cobalt(II) carbonate also occurs as the rare red/pink mineral spherocobaltite.

<span class="mw-page-title-main">Manganese(III) oxide</span> Chemical compound

Manganese(III) oxide is a chemical compound with the formula Mn2O3. It occurs in nature as the mineral bixbyite (recently changed to bixbyite-(Mn)) and is used in the production of ferrites and thermistors.

<span class="mw-page-title-main">Manganese(II) acetate</span> Chemical compound

Manganese(II) acetate are chemical compounds with the formula Mn(CH3CO2)2·(H2O)n where n = 0, 2, 4. These materials are white or pale pink solids. Some of these compounds are used as a catalyst and as fertilizer.

<span class="mw-page-title-main">Manganese(II) nitrate</span> Chemical compound

Manganese(II) nitrate refers to the inorganic compounds with formula Mn(NO3)2·(H2O)n. These compounds are nitrate salts containing varying amounts of water. A common derivative is the tetrahydrate, Mn(NO3)2·4H2O, but mono- and hexahydrates are also known as well as the anhydrous compound. Some of these compounds are useful precursors to the oxides of manganese. Typical of a manganese(II) compound, it is a paramagnetic pale pink solid.

<span class="mw-page-title-main">Metal peroxide</span>

Metal peroxides are metal-containing compounds with ionically- or covalently-bonded peroxide (O2−
2
) groups. This large family of compounds can be divided into ionic and covalent peroxide. The first class mostly contains the peroxides of the alkali and alkaline earth metals whereas the covalent peroxides are represented by such compounds as hydrogen peroxide and peroxymonosulfuric acid (H2SO5). In contrast to the purely ionic character of alkali metal peroxides, peroxides of transition metals have a more covalent character.

References

  1. 1 2 Zumdahl, Steven S. (2009). Chemical Principles 6th Ed. Houghton Mifflin Company. p. A22. ISBN   978-0-618-94690-7.
  2. 1 2 3 Arno H. Reidies "Manganese Compounds" Ullmann's Encyclopedia of Chemical Technology 2007; Wiley-VCH, Weinheim. doi : 10.1002/14356007.a16_123
  3. 1 2 3 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8.
  4. J.E Greedon, (1994), Magnetic oxides in Encyclopedia of Inorganic chemistry Ed. R. Bruce King, John Wiley & Sons ISBN   0-471-93620-0
  5. Shull, C. G.; Strauser, W. A.; Wollan, E. O. (1951-07-15). "Neutron Diffraction by Paramagnetic and Antiferromagnetic Substances". Physical Review. 83 (2). American Physical Society (APS): 333–345. doi:10.1103/physrev.83.333. ISSN   0031-899X.
  6. H. Lux (1963). "Manganeses(II) Oxide". In G. Brauer (ed.). Handbook of Preparative Inorganic Chemistry, 2nd Ed. Vol. 2pages=1455. NY, NY: Academic Press.
  7. Wellbeloved, David B.; Craven, Peter M.; Waudby, John W. (2000). "Manganese and Manganese Alloys". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a16_077. ISBN   3527306730.
  8. W.H. McCarroll (1994) Oxides- Solid State Chemistry, Encyclopedia of Inorganic Chemistry Ed. R. Bruce King, John Wiley & Sons ISBN   0-471-93620-0
  9. Arthur Sutcliffe (1930) Practical Chemistry for Advanced Students (1949 Ed.), John Murray - London.