Pandemic Severity Assessment Framework

Last updated

The Pandemic Severity Assessment Framework (PSAF) is an evaluation framework published by the Centers for Disease Control and Prevention in 2016 which uses quadrants to evaluate both the transmissibility and clinical severity of an influenza pandemic and to combine these into an overall impact estimate. [1] Clinical severity is calculated via multiple measures including case fatality rate, case-hospitalization ratios, and deaths-hospitalizations ratios, while viral transmissibility is measured via available data among secondary household attack rates, school attack rates, workplace attack rates, community attack rates, rates of emergency department and outpatient visits for influenza-like illness. [2] [3]

Contents

The PSAF superseded the 2007 linear Pandemic Severity Index (PSI), which assumed 30% spread and measured case fatality rate (CFR) to assess the severity and evolution of the pandemic. [3] [4] The United States Centers for Disease Control and Prevention (CDC) adopted the PSAF as its official pandemic severity assessment tool in 2014, [4] and it was the official pandemic severity assessment tool listed in the CDC's National Pandemic Strategy at the time of the COVID-19 pandemic. [5]

Measures used in the framework

Historically, measures of influenza pandemic severity were based on the case fatality rate. [6] However, the case fatality rate might not be an adequate measure of pandemic severity during a pandemic response because: [2]

To account for the limitations of measuring the case fatality rate alone, the PSAF rates severity of a disease outbreak on two dimensions: clinical severity of illness in infected persons; and the transmissibility of the infection in the population. [2] Each dimension can be measured using more than one measure, which are scaled to facilitate comparison. Having multiple measures for each dimension offers flexibility to choose a measure that is readily available, accurate, and representative of the impact of the pandemic. It also allows comparison across measures for a more complete understanding of the severity. The framework gives commentary on the strengths and limitations of various measures of clinical severity and transmissibility as well as guidelines for scaling them. It also provides examples of assessing past pandemics using the framework. [2]

Measures of transmissibility

The original documentation for the PSAF includes the following as potential measures of transmissibility: [2]

Measures of clinical severity

The original documentation for the PSAF includes the following as potential measures of clinical severity: [2]

Severity of past influenza pandemics

Estimates of hypothetical influenza deaths in the 2010 United States population (308,745,538 persons) across varying values of case-fatality ratio and the cumulative incidence of infection in the population. Selected estimated numbers of deaths are indicated with a black line, across each relevant combination of case-fatality ratio and cumulative incidence. In addition, the background color transitions from blue to yellow to red as the estimated absolute number of deaths increases. Case-fatality ratio is an example of a clinical severity measure and cumulative incidence of infection is an example of a transmissibility measure in the Pandemic Severity Assessment Framework. Model of Influenza Deaths in 2010 US Population.jpg
Estimates of hypothetical influenza deaths in the 2010 United States population (308,745,538 persons) across varying values of case-fatality ratio and the cumulative incidence of infection in the population. Selected estimated numbers of deaths are indicated with a black line, across each relevant combination of case-fatality ratio and cumulative incidence. In addition, the background color transitions from blue to yellow to red as the estimated absolute number of deaths increases. Case-fatality ratio is an example of a clinical severity measure and cumulative incidence of infection is an example of a transmissibility measure in the Pandemic Severity Assessment Framework.

The original developers of the PSAF provided a model for the number of hypothetical deaths in the United States 2010 population of an influenza pandemic using the PSAF. While the axes of the PSAF are scaled measures of transmissibility and clinical severity, this model uses the case-fatality ratio instead of the scaled measure of clinical severity and the cumulative incidence of infection instead of the scaled measure of transmissibility. [2]

Influenza severity

Scaled examples of past influenza pandemics and past influenza seasons. Color scheme included to represent corresponding estimates of hypothetical influenza deaths in the 2010 US population, with the same color scale as the previous figure. Past Influenza Outbreaks on the Pandemic Severity Assessment Framework.jpg
Scaled examples of past influenza pandemics and past influenza seasons. Color scheme included to represent corresponding estimates of hypothetical influenza deaths in the 2010 US population, with the same color scale as the previous figure.

During its development, the PSAF was applied to past influenza pandemics and epidemics, resulting in the following assessments: [2]

Influenza pandemic or flu seasonTransmissibilityClinical Severity
Spanish flu pandemic 57
1957–1958 influenza pandemic 44
1968 influenza pandemic 43
1977-1978 influenza epidemic 22
2006-2007 flu season 11
2007-2008 flu season 23
2009 swine flu pandemic 32

COVID-19 pandemic severity

A team of Brazilian researchers preliminarily assessed the severity of the COVID-19 pandemic using the PSAF in April 2020 based on Chinese data as at 11 February 2020. In their preliminary assessment, they rate COVID-19's scaled transmissibility at 5 and its scaled clinical severity at 4 to 7, placing the COVID-19 pandemic in the "very high severity" quadrant. This preliminary assessment ranks the COVID-19 pandemic as the most severe pandemic since the 1918 influenza pandemic. [8]

Human and pandemic coronavirusesTransmissibilityClinical Severity
COVID-19 pandemic 54~7

See also

Related Research Articles

<span class="mw-page-title-main">Pandemic</span> Global epidemic of infectious disease

A pandemic is an epidemic of an infectious disease that has spread across a large region, for instance multiple continents or worldwide, affecting a substantial number of individuals. Widespread endemic diseases with a stable number of infected individuals such as recurrences of seasonal influenza are generally excluded as they occur simultaneously in large regions of the globe rather than being spread worldwide.

<span class="mw-page-title-main">Avian influenza</span> Influenza caused by viruses adapted to birds

Avian influenza, also known as avian flu, is a bird flu caused by the influenza A virus, which can infect people. It is similar to other types of animal flu in that it is caused by a virus strain that has adapted to a specific host. The type with the greatest risk is highly pathogenic avian influenza (HPAI).

<span class="mw-page-title-main">Oseltamivir</span> Antiviral medication used against influenza A and influenza B

Oseltamivir, sold under the brand name Tamiflu, is an antiviral medication used to treat and prevent influenza A and influenza B, viruses that cause the flu. Many medical organizations recommend it in people who have complications or are at high risk of complications within 48 hours of first symptoms of infection. They recommend it to prevent infection in those at high risk, but not the general population. The Centers for Disease Control and Prevention (CDC) recommends that clinicians use their discretion to treat those at lower risk who present within 48 hours of first symptoms of infection. It is taken by mouth, either as a pill or liquid.

<span class="mw-page-title-main">Influenza vaccine</span> Vaccine against influenza

Influenza vaccines, also known as flu shots, are vaccines that protect against infection by influenza viruses. New versions of the vaccines are developed twice a year, as the influenza virus rapidly changes. While their effectiveness varies from year to year, most provide modest to high protection against influenza. The United States Centers for Disease Control and Prevention (CDC) estimates that vaccination against influenza reduces sickness, medical visits, hospitalizations, and deaths. Immunized workers who do catch the flu return to work half a day sooner on average. Vaccine effectiveness in those over 65 years old remains uncertain due to a lack of high-quality research.

<span class="mw-page-title-main">Flu season</span> Recurring periods of influenza

Flu season is an annually recurring time period characterized by the prevalence of an outbreak of influenza (flu). The season occurs during the cold half of the year in each hemisphere. It takes approximately two days to show symptoms. Influenza activity can sometimes be predicted and even tracked geographically. While the beginning of major flu activity in each season varies by location, in any specific location these minor epidemics usually take about three weeks to reach its pinnacle, and another three weeks to significantly diminish.

<span class="mw-page-title-main">Influenza pandemic</span> Pandemic involving influenza

An influenza pandemic is an epidemic of an influenza virus that spreads across a large region and infects a large proportion of the population. There have been six major influenza epidemics in the last 140 years, with the 1918 flu pandemic being the most severe; this is estimated to have been responsible for the deaths of 50–100 million people. The most recent, the 2009 swine flu pandemic, resulted in under 300,000 deaths and is considered relatively mild. These pandemics occur irregularly.

In epidemiology, case fatality rate (CFR) – or sometimes more accurately case-fatality risk – is the proportion of people diagnosed with a certain disease, who end up dying of it. Unlike a disease's mortality rate, the CFR does not take into account the time period between disease onset and death. A CFR is generally expressed as a percentage. It represents a measure of disease lethality and may change with different treatments. CFRs are most often used for with discrete, limited-time courses, such as acute infections.

<span class="mw-page-title-main">Pandemic severity index</span> Proposed measure of the severity of influenza

The pandemic severity index (PSI) was a proposed classification scale for reporting the severity of influenza pandemics in the United States. The PSI was accompanied by a set of guidelines intended to help communicate appropriate actions for communities to follow in potential pandemic situations. Released by the United States Department of Health and Human Services (HHS) on February 1, 2007, the PSI was designed to resemble the Saffir-Simpson Hurricane Scale classification scheme. The index was replaced by the Pandemic Severity Assessment Framework in 2014, which uses quadrants based on transmissibility and clinical severity rather than a linear scale.

<span class="mw-page-title-main">Vaccine efficacy</span> Reduction of disease among the vaccinated comparing to the unvaccinated

Vaccine efficacy or vaccine effectiveness is the percentage reduction of disease cases in a vaccinated group of people compared to an unvaccinated group. For example, a vaccine efficacy or effectiveness of 80% indicates an 80% decrease in the number of disease cases among a group of vaccinated people compared to a group in which nobody was vaccinated. When a study is carried out using the most favorable, ideal or perfectly controlled conditions, such as those in a clinical trial, the term vaccine efficacy is used. On the other hand, when a study is carried out to show how well a vaccine works when they are used in a bigger, typical population under less-than-perfectly controlled conditions, the term vaccine effectiveness is used.

<span class="mw-page-title-main">Human mortality from H5N1</span>

Human mortality from H5N1 or the human fatality ratio from H5N1 or the case-fatality rate of H5N1 is the ratio of the number of confirmed human deaths resulting from confirmed cases of transmission and infection of H5N1 to the number of those confirmed cases. For example, if there are 100 confirmed cases of humans infected with H5N1 and 10 die, then there is a 10% human fatality ratio. H5N1 flu is a concern due to the global spread of H5N1 that constitutes a pandemic threat. The majority of H5N1 flu cases have been reported in southeast and east Asia. The case-fatality rate is central to pandemic planning. Estimates of case-fatality (CF) rates for past influenza pandemics have ranged from to 2-3% for the 1918 pandemic to about 0.6% for the 1957 pandemic to 0.2% for the 1968 pandemic. As of 2008, the official World Health Organization estimate for the case-fatality rate for the outbreak of H5N1 avian influenza was approximately 60%. Public health officials in Ontario, Canada argue that the true case-fatality rate could be lower, pointing to studies suggesting it could be 14-33%, and warned that it was unlikely to be as low as the 0.1–0.4% rate that was built into many pandemic plans.

<span class="mw-page-title-main">2009 swine flu pandemic</span> 2009–2010 pandemic of swine influenza caused by H1N1 influenza virus

The 2009 swine flu pandemic, caused by the H1N1/swine flu/influenza virus and declared by the World Health Organization (WHO) from June 2009 to August 2010, is the third recent flu pandemic involving the H1N1 virus. The first two cases were discovered independently in the United States in April 2009. The virus appeared to be a new strain of H1N1 that resulted from a previous triple reassortment of bird, swine, and human flu viruses which further combined with a Eurasian pig flu virus, leading to the term "swine flu".

The 2009 flu pandemic in the United States was caused by a novel strain of the Influenza A/H1N1 virus, commonly referred to as "swine flu", that was first detected on 15 April 2009. While the 2009 H1N1 virus strain was commonly referred to as "swine flu", there is no evidence that it is endemic to pigs or of transmission from pigs to people; instead, the virus spreads from person to person. On April 25, the World Health Organization declared a public health emergency, followed concurringly by the Obama administration on April 26.

<span class="mw-page-title-main">Social distancing</span> Infection control technique by keeping a distance from each other

In public health, social distancing, also called physical distancing, is a set of non-pharmaceutical interventions or measures intended to prevent the spread of a contagious disease by maintaining a physical distance between people and reducing the number of times people come into close contact with each other. It usually involves keeping a certain distance from others and avoiding gathering together in large groups.

<span class="mw-page-title-main">2009 swine flu pandemic vaccine</span> Protection against the H1N1/09 virus

The 2009 swine flu pandemic vaccines were influenza vaccines developed to protect against the pandemic H1N1/09 virus. These vaccines either contained inactivated (killed) influenza virus, or weakened live virus that could not cause influenza. The killed virus was injected, while the live virus was given as a nasal spray. Both these types of vaccine were produced by growing the virus in chicken eggs. Around three billion doses were produced, with delivery in November 2009.

<span class="mw-page-title-main">COVID-19</span> Contagious disease caused by SARS-CoV-2

Coronavirus disease 2019 (COVID-19) is a contagious disease caused by the virus SARS-CoV-2. The first known case was identified in Wuhan, China, in December 2019. The disease quickly spread worldwide, resulting in the COVID-19 pandemic.

<span class="mw-page-title-main">COVID-19 pandemic in the United States</span> COVID-19 viral pandemic in the United States

In the United States, the worldwide pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in 103,436,829 confirmed cases with 1,127,152 all-time deaths, the most of any country, and the 20th-highest per capita worldwide. The COVID-19 pandemic ranks first on the list of disasters in the United States by death toll; it was the third-leading cause of death in the U.S. in 2020, behind heart disease and cancer. From 2019 to 2020, U.S. life expectancy dropped by 3 years for Hispanic and Latino Americans, 2.9 years for African Americans, and 1.2 years for white Americans. These effects persisted as U.S. deaths due to COVID-19 in 2021 exceeded those in 2020, and life expectancy continued to fall from 2020 to 2021.

<span class="mw-page-title-main">United States influenza statistics by flu season</span>

US influenza statistics by flu season. From the Centers for Disease Control and Prevention page called "Disease Burden of Flu": "Each year CDC estimates the burden of influenza in the U.S. CDC uses modeling to estimate the number of flu illnesses, medical visits, hospitalizations, and deaths related to flu that occurred in a given season. The methods used to calculate these estimates are described on CDC’s webpage, How CDC Estimates the Burden of Seasonal Flu in the U.S."

In epidemiology, a non-pharmaceutical intervention (NPI) is any method used to reduce the spread of an epidemic disease without requiring pharmaceutical drug treatments. Examples of non-pharmaceutical interventions that reduce the spread of infectious diseases include wearing a face mask and staying away from sick people.

<span class="mw-page-title-main">SARS-CoV-2 variant of concern</span> Highly transmissible and virulent strains of SARS-CoV-2

The term variant of concern (VOC) for SARS-CoV-2, which causes COVID-19, is a category used for variants of the virus where mutations in their spike protein receptor binding domain (RBD) substantially increase binding affinity in RBD-hACE2 complex, while also being linked to rapid spread in human populations.

<span class="mw-page-title-main">SARS-CoV-2 Delta variant</span> Variant of SARS-CoV-2 detected late 2020

The Delta variant (B.1.617.2) was a variant of SARS-CoV-2, the virus that causes COVID-19. It was first detected in India on 5 October 2020. The Delta variant was named on 31 May 2021 and had spread to over 179 countries by 22 November 2021. The World Health Organization (WHO) indicated in June 2021 that the Delta variant was becoming the dominant strain globally.

References

  1. Roos, Robert (24 April 2017). "New CDC guidelines on flu pandemic measures reflect 2009 lessons". Center for Infectious Disease Research and Policy. Archived from the original on 30 April 2020. Retrieved 9 May 2020.
  2. 1 2 3 4 5 6 7 8 9 10 Reed, Carrie; Biggerstaff, Matthew; Finelli, Lyn; Koonin, Lisa M.; Beauvais, Denise; Uzicanin, Amra; Plummer, Andrew; Bresee, Joe; Redd, Stephen C.; Jernigan, Daniel B. (January 2013). "Novel framework for assessing epidemiologic effects of influenza epidemics and pandemics". Emerging Infectious Diseases. 19 (1): 85–91. doi:10.3201/eid1901.120124. ISSN   1080-6059. PMC   3557974 . PMID   23260039.
  3. 1 2 Qualls, Noreen; Levitt, Alexandra; Kanade, Neha; Wright-Jegede, Narue; Dopson, Stephanie; Biggerstaff, Matthew; Reed, Carrie; Uzicanin, Amra (21 April 2017). "Community Mitigation Guidelines to Prevent Pandemic Influenza — United States, 2017" (PDF). Morbidity and Mortality Weekly Report. Center for Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention. 66 (RR-1): 1–34. doi: 10.15585/mmwr.rr6601a1 . ISSN   1057-5987. PMC   5837128 . PMID   28426646. Archived (PDF) from the original on 9 May 2020. Retrieved 10 May 2020.
  4. 1 2 Holloway, Rachel; Rasmussen, Sonja A.; Zaza, Stephanie; Cox, Nancy J.; Jernigan, Daniel B. (26 September 2014). "Updated Preparedness and Response Framework for Influenza Pandemics" (PDF). Morbidity and Mortality Weekly Report. Center for Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention. 63 (RR-6): 1–18. ISSN   1057-5987. PMID   25254666. Archived (PDF) from the original on 20 September 2020. Retrieved 10 May 2020. This report provides an update to the 2008 framework to reflect experiences with 2009 H1N1 and recent responses to localized outbreaks of novel influenza A viruses. The revised framework also incorporates the recently developed Influenza Risk Assessment Tool (IRAT) (12) and Pandemic Severity Assessment Framework (PSAF) (13)...PSAF replaces the Pandemic Severity Index as a severity assessment tool (13).
  5. "Pandemic Severity Assessment Framework (PSAF)". National Pandemic Strategy. Centers for Disease Control and Prevention. 3 November 2016. Archived from the original on 4 May 2020. Retrieved 9 May 2020.
  6. Interim Pre-Pandemic Planning Guidance: Community Strategy for Pandemic Influenza Mitigation in the United States (PDF). Centers for Disease Control and Prevention. February 2007. p. 9. Archived (PDF) from the original on 2020-03-19. Retrieved 2020-05-10.
  7. Rajgor, Dimple D.; Lee, Meng Har; Archuleta, Sophia; Bagdasarian, Natasha; Quek, Swee Chye (27 March 2020). "The many estimates of the COVID-19 case fatality rate". The Lancet Infectious Diseases. Elsevier Ltd. 20 (7): 776–777. doi: 10.1016/S1473-3099(20)30244-9 . PMC   7270047 . PMID   32224313.
  8. Ribas Freitas, André Ricardo; Napimoga, Marcelo; Donalisio, Maria Rita (April 2020). "Assessing the severity of COVID-19". Epidemiologia e Serviços de Saúde. 29 (2): 5. doi: 10.5123/S1679-49742020000200008 . PMID   32267300. Archived from the original on 12 December 2020. Retrieved 9 May 2020.