1,4-Benzoquinone

Last updated

Contents

1,4-Benzoquinone
Skeletal formula P-Benzochinon.svg
Skeletal formula
Space-filling model 1,4-benzoquinone-3D-vdW.png
Space-filling model
Para-Benzoquinone needles.jpg
Names
Preferred IUPAC name
Cyclohexa-2,5-diene-1,4-dione [1]
Other names
1,4-Benzoquinone [1]
Benzoquinone
p-Benzoquinone
p-Quinone
Identifiers
3D model (JSmol)
773967
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.003.097 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 203-405-2
2741
KEGG
PubChem CID
RTECS number
  • DK2625000
UNII
UN number 2587
  • InChI=1S/C6H4O2/c7-5-1-2-6(8)4-3-5/h1-4H Yes check.svgY
    Key: AZQWKYJCGOJGHM-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C6H4O2/c7-5-1-2-6(8)4-3-5/h1-4H
    Key: AZQWKYJCGOJGHM-UHFFFAOYAR
  • O=C\1\C=C/C(=O)/C=C/1
  • C1=CC(=O)C=CC1=O
Properties
C6H4O2
Molar mass 108.096 g·mol−1
AppearanceYellow solid
Odor Acrid, chlorine-like [2]
Density 1.318 g/cm3 at 20 °C
Melting point 115 °C (239 °F; 388 K)
Boiling point Sublimes
11 g/L (18 °C)
Solubility Slightly soluble in petroleum ether; soluble in acetone; 10% in ethanol, benzene, diethyl ether
Vapor pressure 0.1 mmHg (25 °C) [2]
−38.4·10−6 cm3/mol
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Toxic
GHS labelling:
GHS-pictogram-skull.svg GHS-pictogram-exclam.svg GHS-pictogram-pollu.svg
Danger
H301, H315, H319, H331, H335, H400
P261, P264, P270, P271, P273, P280, P301+P310, P302+P352, P304+P340, P305+P351+P338, P311, P312, P321, P330, P332+P313, P337+P313, P362, P391, P403+P233, P405, P501
Flash point 38 to 93 °C; 100 to 200 °F; 311 to 366 K [2]
Lethal dose or concentration (LD, LC):
296 mg/kg (mammal, subcutaneous)
93.8 mg/kg (mouse, subcutaneous)
8.5 mg/kg (mouse, IP)
5.6 mg/kg (rat)
130 mg/kg (rat, oral)
25 mg/kg (rat, IV) [3]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 0.4 mg/m3 (0.1 ppm) [2]
REL (Recommended)
TWA 0.4 mg/m3 (0.1 ppm) [2]
IDLH (Immediate danger)
100 mg/m3 [2]
Related compounds
Related compounds
1,2-Benzoquinone
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

1,4-Benzoquinone, commonly known as para-quinone, is a chemical compound with the formula C6H4O2. In a pure state, it forms bright-yellow crystals with a characteristic irritating odor, resembling that of chlorine, bleach, and hot plastic or formaldehyde. This six-membered ring compound is the oxidized derivative of 1,4-hydroquinone. [4] The molecule is multifunctional: it exhibits properties of a ketone, being able to form oximes; an oxidant, forming the dihydroxy derivative; and an alkene, undergoing addition reactions, especially those typical for α,β-unsaturated ketones. 1,4-Benzoquinone is sensitive toward both strong mineral acids and alkali, which cause condensation and decomposition of the compound. [5] [6]

Preparation

1,4-Benzoquinone is prepared industrially by oxidation of hydroquinone, which can be obtained by several routes. One route involves oxidation of diisopropylbenzene and the Hock rearrangement. The net reaction can be represented as follows:

C6H4(CHMe2)2 + 3 O2 → C6H4O2 + 2 OCMe2 + H2O

The reaction proceeds via the bis(hydroperoxide) and the hydroquinone. Acetone is a coproduct. [7]

Another major process involves the direct hydroxylation of phenol by acidic hydrogen peroxide: C6H5OH + H2O2 → C6H4(OH)2 + H2O Both hydroquinone and catechol are produced. Subsequent oxidation of the hydroquinone gives the quinone. [8]

Quinone was originally prepared industrially by oxidation of aniline, for example by manganese dioxide. [9] This method is mainly practiced in PRC where environmental regulations are more relaxed.

Oxidation of hydroquinone is facile. [4] [10] One such method makes use of hydrogen peroxide as the oxidizer and iodine or an iodine salt as a catalyst for the oxidation occurring in a polar solvent; e.g. isopropyl alcohol. [11]

When heated to near its melting point, 1,4-benzoquinone sublimes, even at atmospheric pressure, allowing for an effective purification. Impure samples are often dark-colored due to the presence of quinhydrone, a dark green 1:1 charge-transfer complex of quinone with hydroquinone. [12]

Structure and redox

C-C and C-O bond distances in benzoquinone (Q), its 1e reduced derivative (Q ), and hydroquinone (H2Q). DistancesQuinone.png
C–C and C–O bond distances in benzoquinone (Q), its 1e reduced derivative (Q ), and hydroquinone (H2Q).

Benzoquinone is a planar molecule with localized, alternating C=C, C=O, and C–C bonds. Reduction gives the semiquinone anion C6H4O2}, which adopts a more delocalized structure. Further reduction coupled to protonation gives the hydroquinone, wherein the C6 ring is fully delocalized. [13]

Reactions and applications

Quinone is mainly used as a precursor to hydroquinone, which is used in photography and rubber manufacture as a reducing agent and antioxidant. [8] Benzoquinonium is a skeletal muscle relaxant, ganglion blocking agent that is made from benzoquinone. [14]

Organic synthesis

It is used as a hydrogen acceptor and oxidant in organic synthesis. [15] 1,4-Benzoquinone serves as a dehydrogenation reagent. It is also used as a dienophile in Diels Alder reactions. [16]

Benzoquinone reacts with acetic anhydride and sulfuric acid to give the triacetate of hydroxyquinol. [17] [18] This reaction is called the Thiele reaction or Thiele–Winter reaction [19] [20] after Johannes Thiele, who first described it in 1898, and after Ernst Winter, who further described its reaction mechanism in 1900. An application is found in this step of the total synthesis of Metachromin A: [21]

An application of the Thiele reaction, involving a benzoquinone derivative. ThieleReaction.svg
An application of the Thiele reaction, involving a benzoquinone derivative.

Benzoquinone is also used to suppress double-bond migration during olefin metathesis reactions.

An acidic potassium iodide solution reduces a solution of benzoquinone to hydroquinone, which can be reoxidized back to the quinone with a solution of silver nitrate.

Due to its ability to function as an oxidizer, 1,4-benzoquinone can be found in methods using the Wacker-Tsuji oxidation, wherein a palladium salt catalyzes the conversion of an alkene to a ketone. This reaction is typically carried out using pressurized oxygen as the oxidizer, but benzoquinone can sometimes preferred. It is also used as a reagent in some variants on Wacker oxidations.

1,4-Benzoquinone is used in the synthesis of Bromadol and related analogs.

Structure of Cp*Rh(para-quinone). FAMCOM.png
Structure of Cp*Rh(para-quinone).

2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) is a stronger oxidant and dehydrogenation agent than 1,4-benzoquinone. [23] Chloranil 1,4-C6Cl4O2 is another potent oxidant and dehydrogenation agent. Monochloro-p-benzoquinone is yet another but milder oxidant. [24]

Metabolism

1,4-Benzoquinone is a toxic metabolite found in human blood and can be used to track exposure to benzene or mixtures containing benzene and benzene compounds, such as petrol. [25] The compound can interfere with cellular respiration, and kidney damage has been found in animals receiving severe exposure. It is excreted in its original form and also as variations of its own metabolite, hydroquinone. [9]

Safety

The bombardier beetle sprays 1,4-Benzoquinone to deter predators Brachinus spPCCA20060328-2821B.jpg
The bombardier beetle sprays 1,4-Benzoquinone to deter predators

1,4-Benzoquinone is able to stain skin dark brown, cause erythema (redness, rashes on skin) and lead on to localized tissue necrosis. It is particularly irritating to the eyes and respiratory system. Its ability to sublime at commonly encountered temperatures allows for a greater airborne exposure risk than might be expected for a room-temperature solid. IARC has found insufficient evidence to comment on the compound's carcinogenicity, but has noted that it can easily pass into the bloodstream and that it showed activity in depressing bone marrow production in mice and can inhibit protease enzymes involved in cellular apoptosis. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Ketone</span> Organic compounds of the form >C=O

In organic chemistry, a ketone is an organic compound with the structure R−C(=O)−R', where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group −C(=O)−. The simplest ketone is acetone, with the formula (CH3)2CO. Many ketones are of great importance in biology and industry. Examples include many sugars (ketoses), many steroids, and the solvent acetone.

<span class="mw-page-title-main">Phenols</span> Chemical compounds in which hydroxyl group is attached directly to an aromatic ring

In organic chemistry, phenols, sometimes called phenolics, are a class of chemical compounds consisting of one or more hydroxyl groups bonded directly to an aromatic hydrocarbon group. The simplest is phenol, C
6
H
5
OH
. Phenolic compounds are classified as simple phenols or polyphenols based on the number of phenol units in the molecule.

Mesitylene or 1,3,5-trimethylbenzene is a derivative of benzene with three methyl substituents positioned symmetrically around the ring. The other two isomeric trimethylbenzenes are 1,2,4-trimethylbenzene (pseudocumene) and 1,2,3-trimethylbenzene (hemimellitene). All three compounds have the formula C6H3(CH3)3, which is commonly abbreviated C6H3Me3. Mesitylene is a colorless liquid with sweet aromatic odor. It is a component of coal tar, which is its traditional source. It is a precursor to diverse fine chemicals. The mesityl group (Mes) is a substituent with the formula C6H2Me3 and is found in various other compounds.

The quinones are a class of organic compounds that are formally "derived from aromatic compounds [such as benzene or naphthalene] by conversion of an even number of –CH= groups into –C(=O)– groups with any necessary rearrangement of double bonds", resulting in "a fully conjugated cyclic dione structure". The archetypical member of the class is 1,4-benzoquinone or cyclohexadienedione, often called simply "quinone". Other important examples are 1,2-benzoquinone (ortho-quinone), 1,4-naphthoquinone and 9,10-anthraquinone.

<span class="mw-page-title-main">Anthraquinone</span> Yellow chemical compound: building block of many dyes

Anthraquinone, also called anthracenedione or dioxoanthracene, is an aromatic organic compound with formula C
14
H
8
O
2
. Several isomers exist but these terms usually refer to 9,10-anthraquinone wherein the keto groups are located on the central ring. It is used as a digester additive to wood pulp for papermaking. Many anthraquinone derivatives are generated by organisms or synthesised industrially for use as dyes, pharmaceuticals, and catalysts. Anthraquinone is a yellow, highly crystalline solid, poorly soluble in water but soluble in hot organic solvents. It is almost completely insoluble in ethanol near room temperature but 2.25 g will dissolve in 100 g of boiling ethanol. It is found in nature as the rare mineral hoelite.

Cyclohexene is a hydrocarbon with the formula (CH2)4C2H2. It is an example of a cycloalkene. At room temperature, cyclohexene is a colorless liquid with a sharp odor. Among its uses, it is an intermediate in the commercial synthesis of nylon.

<span class="mw-page-title-main">Catechol</span> Organic compound (C6H4(OH)2); benzene with two adjacent –OH groups

Catechol, also known as pyrocatechol or 1,2-dihydroxybenzene, is an organic compound with the molecular formula C6H4(OH)2. It is the ortho isomer of the three isomeric benzenediols. This colorless compound occurs naturally in trace amounts. It was first discovered by destructive distillation of the plant extract catechin. About 20,000 tonnes of catechol are now synthetically produced annually as a commodity organic chemical, mainly as a precursor to pesticides, flavors, and fragrances. Small amounts of catechol occur in fruits and vegetables.

<span class="mw-page-title-main">Hydroquinone</span> Chemical compound

Hydroquinone, also known as benzene-1,4-diol or quinol, is an aromatic organic compound that is a type of phenol, a derivative of benzene, having the chemical formula C6H4(OH)2. It has two hydroxyl groups bonded to a benzene ring in a para position. It is a white granular solid. Substituted derivatives of this parent compound are also referred to as hydroquinones. The name "hydroquinone" was coined by Friedrich Wöhler in 1843.

<span class="mw-page-title-main">Cyclohexanone</span> Chemical compound

Cyclohexanone is the organic compound with the formula (CH2)5CO. The molecule consists of six-carbon cyclic molecule with a ketone functional group. This colorless oily liquid has a sweet odor reminiscent of benzaldehyde. Over time, samples of cyclohexanone assume a pale yellow color.

Aromatization is a chemical reaction in which an aromatic system is formed from a single nonaromatic precursor. Typically aromatization is achieved by dehydrogenation of existing cyclic compounds, illustrated by the conversion of cyclohexane into benzene. Aromatization includes the formation of heterocyclic systems.

<span class="mw-page-title-main">Potassium peroxymonosulfate</span> Chemical compound

Potassium peroxymonosulfate is widely used as an oxidizing agent, for example, in pools and spas. It is the potassium salt of peroxymonosulfuric acid. Potassium peroxymonosulfate per se is rarely encountered. It is often confused with the triple salt 2KHSO5·KHSO4·K2SO4, known as Oxone.

<span class="mw-page-title-main">Copper chromite</span> Chemical compound

Copper chromite often refers to inorganic compounds with the formula Cu2Cr2Ox. They are black solids. Cu2Cr2O4 is a well-defined material. The other copper chromite often is described as Cu2Cr2O5. It is used to catalyze reactions in organic chemistry.

1,2-Benzoquinone, also called ortho-benzoquinone, is an organic compound with formula C6H4O2. It is one of the two isomers of quinone, the other being 1,4-benzoquinone. It is a red volatile solid that is soluble in water and ethyl ether. It is rarely encountered because of its instability, but it is of fundamental interest as the parent compound of many derivatives which are known.

<span class="mw-page-title-main">Chromyl chloride</span> Chemical compound

Chromyl chloride is an inorganic compound with the formula CrO2Cl2. It is a reddish brown compound that is a volatile liquid at room temperature, which is unusual for transition metal compounds. It is the dichloride of chromic acid.

<span class="mw-page-title-main">Lead(IV) acetate</span> Organometallic compound (Pb(C2H3O2)4)

Lead(IV) acetate or lead tetraacetate is an metalorganic compound with chemical formula Pb(C2H3O2)4. It is a colorless solid that is soluble in nonpolar, organic solvents, indicating that it is not a salt. It is degraded by moisture and is typically stored with additional acetic acid. The compound is used in organic synthesis.

The reduction of nitro compounds are chemical reactions of wide interest in organic chemistry. The conversion can be effected by many reagents. The nitro group was one of the first functional groups to be reduced. Alkyl and aryl nitro compounds behave differently. Most useful is the reduction of aryl nitro compounds.

The Glaser coupling is a type of coupling reaction. It is by far one of the oldest coupling reactions and is based on copper compounds like copper(I) chloride or copper(I) bromide and an additional oxidant like air. The base used in the original research paper is ammonia and the solvent is water or an alcohol. The reaction was first reported by Carl Andreas Glaser in 1869. He suggested the following process on his way to diphenylbutadiyne:

<span class="mw-page-title-main">4-Nitroaniline</span> Chemical compound

4-Nitroaniline, p-nitroaniline or 1-amino-4-nitrobenzene is an organic compound with the formula C6H6N2O2. A yellow solid, it is one of three isomers of nitroaniline. It is an intermediate in the production of dyes, antioxidants, pharmaceuticals, gasoline, gum inhibitors, poultry medicines, and as a corrosion inhibitor.

1-Naphthol, or α-naphthol, is an organic compound with the formula C10H7OH. It is a fluorescent white solid. 1-Naphthol differs from its isomer 2-naphthol by the location of the hydroxyl group on the naphthalene ring. The naphthols are naphthalene homologues of phenol. Both isomers are soluble in simple organic solvents. They are precursors to a variety of useful compounds.

<span class="mw-page-title-main">2,3-Dichloro-5,6-dicyano-1,4-benzoquinone</span> Chemical compound

2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (or DDQ) is the chemical reagent with formula C6Cl2(CN)2O2. This oxidant is useful for the dehydrogenation of alcohols, phenols, and steroid ketones. DDQ decomposes in water, but is stable in aqueous mineral acid.

References

  1. 1 2 Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. pp. 723–724. doi:10.1039/9781849733069-FP001. ISBN   978-0-85404-182-4.
  2. 1 2 3 4 5 6 NIOSH Pocket Guide to Chemical Hazards. "#0542". National Institute for Occupational Safety and Health (NIOSH).
  3. "Quinone". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  4. 1 2 Underwood, H. W. Jr.; Walsh, W. L. (1936). "Quinone". Organic Syntheses . 16: 73. doi:10.15227/orgsyn.002.0085 ; Collected Volumes, vol. 2, p. 553.
  5. Patai, Saul; Rappoport, Zvi, eds. (1988). The Quinonoid Compounds: Vol. 1 (1988). doi:10.1002/9780470772119. ISBN   978-0-470-77211-9.
  6. Patai, Saul; Rappoport, Zvi, eds. (1988). The Quinonoid Compounds: Vol. 2 (1988). doi:10.1002/9780470772126. ISBN   978-0-470-77212-6.
  7. Gerhard Franz, Roger A. Sheldon "Oxidation" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000 doi : 10.1002/14356007.a18_261
  8. 1 2 Phillip M. Hudnall "Hydroquinone" in Ullmann's Encyclopedia of Industrial Chemistry, 2002, Wiley-VCH, Weinheim. 2005 Wiley-VCH, Weinheim. doi : 10.1002/14356007.a13_499.
  9. 1 2 3 "1,4-Benzoquinone (para-Quinone)". Re-evaluation of Some Organic Chemicals, Hydrazine and Hydrogen Peroxide (Part 1, Part 2, Part 3) (PDF). IARC Monographs.
  10. Vliet, E. B. (1922). "Quinone". Organic Syntheses . 2: 85. doi:10.15227/orgsyn.016.0073 ; Collected Volumes, vol. 1, p. 482.
  11. USpatent 4973720,"Process for the preparation of p-benzoquinone"
  12. Sakurai, T. (1968). "On the refinement of the crystal structures of phenoquinone and monoclinic quinhydrone". Acta Crystallographica Section B. 24 (3): 403–412. Bibcode:1968AcCrB..24..403S. doi:10.1107/S0567740868002451.
  13. 1 2 Lü, Jian-Ming; Rosokha, Sergiy V; Neretin, Ivan S; Kochi, Jay K (2006). "Quinones as Electron Acceptors. X-Ray Structures, Spectral (EPR, UV−vis) Characteristics and Electron-Transfer Reactivities of Their Reduced Anion Radicals as Separated vs Contact Ion Pairs". Journal of the American Chemical Society. 128 (51): 16708–19. doi:10.1021/ja066471o. PMID   17177421.
  14. Cavallito, Chester J.; Soria, Albert E.; Hoppe, James O. (1950). "Amino- and Ammonium-alkylaminobenzoquinones as Curarimimetic Agents". Journal of the American Chemical Society. 72 (6): 2661–2665. doi:10.1021/ja01162a088. ISSN   0002-7863.
  15. Yang, T.-K.; Shen, C.-Y. (2004). "1,4-Benzoquinone". In L. Paquette (ed.). Encyclopedia of Reagents for Organic Synthesis. New York: J. Wiley & Sons. doi:10.1002/047084289X.rb033. ISBN   978-0-471-93623-7.
  16. Oda, M.; Kawase, T.; Okada, T.; Enomoto, T. (1996). "2-Cyclohexene-1,4-dione". Organic Syntheses . 73: 253. doi:10.15227/orgsyn.073.0253 ; Collected Volumes, vol. 9, p. 186.
  17. Vliet, E. B. (1941). "Hydroquinone Triacetate". Organic Syntheses. 1: 317. doi:10.15227/orgsyn.004.0035.
  18. Knowles, M. B. (1952). "Process for production of 2,4,5-trihydroxyacetophenone" (PDF). Google Patents. Eastman Kodak Co. Retrieved 24 December 2014.
  19. McOmie, J. F. W.; Blatchly, J. M. (2011). "The Thiele-Winter Acetoxylation of Quinones". Organic Reactions. Vol. 19. pp. 199–277. doi:10.1002/0471264180.or019.03. ISBN   978-0-471-19619-8.
  20. Thiele, J. (1898). "Ueber die Einwirkung von Essigsäure-anhydrid auf Chinon und auf Dibenzoylstyrol". Berichte der Deutschen Chemischen Gesellschaft . 31 (1): 1247–1249. doi:10.1002/cber.189803101226.
  21. Almeida, W. P.; Correia, C. R. D. (1999). "Stereoselective Total Synthesis and Enantioselective Formal Synthesis of the Antineoplastic Sesquiterpene Quinone Metachromin A" (PDF). Journal of the Brazilian Chemical Society. 10 (5): 401–414. doi: 10.1590/S0103-50531999000500011 .
  22. Moussa, Jamal; Guyard-Duhayon, Carine; Herson, Patrick; Amouri, Hani; Rager, Marie Noelle; Jutand, Anny (2004). "η5-Semiquinone Complexes and the Related η4-Benzoquinone of (Pentamethylcyclopentadienyl)rhodium and -iridium: Synthesis, Structures, Hydrogen Bonding, and Electrochemical Behavior". Organometallics. 23 (26): 6231–6238. doi:10.1021/om049292t.
  23. Vogel, E.; Klug, W.; Breuer, A. (1974). "1,6-Methano[10]annulene". Organic Syntheses . 54: 11. doi:10.15227/orgsyn.054.0011 ; Collected Volumes, vol. 6, p. 731.
  24. Harman, R. E. (1955). "Chloro-p-benzoquinone". Organic Syntheses . 35: 22. doi:10.15227/orgsyn.035.0022 ; Collected Volumes, vol. 4, p. 148.
  25. Lin, Y. S.; McKelvey, W.; Waidyanatha, S.; Rappaport, S. M. (2006). "Variability of Albumin Adducts of 1,4-Benzoquinone, a Toxic Metabolite of Benzene, in Human Volunteers". Biomarkers. 11 (1): 14–27. doi:10.1080/13547500500382975. PMID   16484134. S2CID   13198966.