2000-watt society

Last updated

The 2000-watt society concept, introduced in 1998 by the Swiss Federal Institute of Technology in Zurich (ETH Zurich), aims to reduce the average primary energy use of First World citizens to no more than 2,000 watts (equivalent to 2 kilowatt-hours per hour or 48 kilowatt-hours per day) by 2050, without compromising their standard of living [1] .

Contents

In a 2008 referendum, more than three-quarters of Zurich's residents endorsed a proposal to lower the city's energy consumption to 2,000 watts per capita and cut greenhouse gas emissions to one ton per capita annually by 2050, with a clear exclusion of nuclear energy. This occasion marked the first democratic legitimization of the concept [2] .

In 2009, energy consumption averaged 6,000 watts in Western Europe, 12,000 watts in the United States, 1,500 watts in China, and 300 watts in Bangladesh [1] . At that time, Switzerland's average energy consumption stood at approximately 5,000 watts, having last been a 2,000-watt society in the 1960s [2] .

The 2000-watt society initiative is supported by the Swiss Federal Office of Energy (SFOE), the Association of Swiss Architects and Engineers, and other bodies [3] .

Current energy use

Breakdown of average energy consumption of 5.1 kW by a Swiss person as of July 2008:

CountryCurrent use (kW)Fixed goal (kW)
United States12 [4]  ?
India1 [4] No
China1.5 [4] No
Switzerland5 [4] No
Europe6 [4] No
Switzerland (Zürich)5 [5] 2 by 2050 [5]
Switzerland (Basel)5 [6] 2 by ?

Implications

Researchers in Switzerland believe that this vision is achievable, despite a projected 65% increase in economic growth by 2050, by using new low-carbon technologies and techniques. [7]

It is envisaged that achieving the aim of a 2000-watt society will require, amongst other measures, a complete reinvestment in the country's capital assets; refurbishment of the nation's building stock to bring it up to low-energy building standards; significant improvements in the efficiency of road transport, aviation and energy-intensive material use; the possible introduction of high-speed maglev trains; the use of renewable energy sources, district heating, microgeneration and related technologies; and a refocusing of research into new priority areas.

As a result of the intensified research and development effort required, it is hoped that Switzerland will become a leader in the technologies involved. Indeed, the idea has a great deal of government backing, due to fears about climate change.

Progress towards a 2000-watt society

The 2,000-watt society principle is gaining momentum in Switzerland. A 2016 article revealed that 2% of Swiss residents adhere to the 2,000-watt energy limit, with average per capita energy consumption exceeding 5,000 watts. More than 100 municipalities have integrated this objective into their by-laws or energy strategies. Nine complexes in seven cities and towns—Zurich, Basel, Bern, Lucerne, Lenzburg, Kriens, and Prilly/Renens—have been awarded the "2,000-watt area" certificate. [8]

From 2000 to 2020, despite a global increase in energy consumption and greenhouse gas emissions, Switzerland saw notable reductions. The Swiss Federal Office of Energy (FOE) highlights a decrease in per capita energy use from 6,000 to just under 4,000 watts and a nearly 50% cut in greenhouse gas emissions. However, to meet the 2,000-watt society goals by 2050 to 2100, the FOE acknowledges the necessity for more decisive measures, noting the progress is on the right path but could be accelerated. [2]

Certification

The Swiss Federal Office of Energy stipulates that the 2000-watt sites label is awarded to residential developments demonstrating sustainable practices in construction, operation, renovation, and mobility. This certification integrates the Energy City label with the Swiss Engineers and Architects Association's standards. Developers are encouraged to apply at the project's inception, with certification granted upon verification of compliance with set objectives. The label's validity continues until more than 50% of the project undergoes repurposing, ensuring adherence to established criteria. The assessment encompasses management, communication, construction practices, and approaches to supply, disposal, and mobility. [9]

City of Zurich

The 2016 Zurich 2000-Watt Society roadmap documents a reduction in per capita energy consumption to 4,200 watts and CO2 emissions to 4.7 tonnes, compared to 1990 levels. Without additional measures, projections indicate that by 2050, consumption would only decrease to 3,500 watts and CO2 emissions to 3.5 tonnes per person, falling short of the goals of 2,500 watts and 1 ton of CO2 emissions, respectively. To address this, the roadmap outlines specific strategies for energy supply and buildings, including the installation of more efficient appliances (227 watts), energy efficiency measures for redevelopments (170 watts), new building standards (57 watts), the replacement of fossil and nuclear energy with renewables (505 watts), and the modernization of heating systems (28 watts). In the area of mobility, it suggests efforts to reduce energy consumption for aviation (209 watts) and private transport (50 watts) to achieve the 2050 targets. [10] [11]

Basel pilot region

Launched in 2001 and located in the metropolitan area of Basel, 'Pilot Region Basel' aims to develop and commercialize some of the technologies involved. The pilot is a partnership between industry, universities, research institutes and the authorities, coordinated by Novatlantis.[ citation needed ] Participation is not restricted to locally based organizations. The city of Zürich joined the project in 2005 and the canton of Geneva declared its interest in 2008.

Within the pilot region, the projects in progress include demonstration buildings constructed to MINERGIE or Passivhaus standards, electricity generation from renewable energy sources, and vehicles using natural gas, hydrogen and biogas. The aim is to put research into practice, seek continuous improvements, and to communicate progress to all interested parties, including the public.

Fribourg smart living building

The Smart Living Lab based in Fribourg is a joint research center of EPFL, the School of Engineering and Architecture of Fribourg and the University of Fribourg. [12] Together, they designed the smart living building, [13] which will be both a sustainable structure and an evolving building and whose construction starts in 2022. It will house the activities of some 130 researchers, offering laboratories, offices, conference rooms and some experimental dwellings. In this multiple-use context, the building will become an experimental field of studies in itself and aims to find solutions to energy consumption and the greenhouse gas emissions that it generates.

This construction is the group's first case study, and research projects have been established to help it meet the lab's ambitious goals: limiting its consumption and emissions to the values set for 2050 by the 2000-watt society vision, while considering the whole life cycle of its components.

See also

Notes and references

  1. 1 2 "2,000 Watt Society". United Nations University. 2009-06-02.
  2. 1 2 3 Teicher, Jordan G.; Dutkiewicz, Jan; Dutkiewicz, Jan; Aronoff, Kate; Aronoff, Kate; Regunberg, Aaron; Regunberg, Aaron; Featherstone, Liza; Featherstone, Liza (2022-11-15). "Can Switzerland Ever Become a 2,000-Watt Society?". The New Republic. ISSN   0028-6583 . Retrieved 2024-02-20.
  3. "2000-Watt society and 2000-Watt Site". 2000-Watt-Areale (in German). Retrieved 2024-02-21.
  4. 1 2 3 4 5 Elizabeth Kolbert (Journalist). "The Island in the Wind". The New Yorker. Archived from the original on 19 December 2008. Retrieved 2008-12-23.
  5. 1 2 Dr. E. Ledergerber, Dr. André Kuy. "Ergänzung der Gemeindeordnung, Verankerung der Nachhaltigkeit und der 2000 Watt Gessellschaft" (PDF). City of Zurich. zurich_2000W. Retrieved 2008-12-23.
  6. Prof. Armin Binz; Werner Müller; Dr. Dominik Keller; Roland Stulz. "The Basel pilot region of the 2K Watt Sciety". State of Basel. Archived from the original on 11 January 2009. Retrieved 2008-12-23.
  7. Jochem; et al. (2004). "Steps towards a sustainable development. A white book for R & D of energy-efficient technologies" (PDF). ETH Zurich. Archived from the original (PDF) on 12 March 2012. Retrieved 10 September 2010.
  8. Mombelli, Armando Mombelli, Armando (2016-02-15). "2,000-watt society: when the future becomes a reality". SWI swissinfo.ch. Retrieved 2024-02-20.{{cite web}}: CS1 maint: multiple names: authors list (link)
  9. "2000-Watt Sites - opendata.swiss". opendata.swiss. Retrieved 2024-02-20.
  10. "Roadmap 2000-Watt-Gesellschaft (dt. / engl.) - Stadt Zürich". www.stadt-zuerich.ch (in German). Retrieved 2024-02-20.
  11. "Roadmap 2000-Watt Society" (PDF). City of Zurich. November 2016.
  12. "smart living lab research groups". Archived from the original on 2018-05-15. Retrieved 2018-05-15.
  13. "Smart living Building".

Related Research Articles

<span class="mw-page-title-main">Energy policy</span> How a government or business deals with energy

Energy policy is the manner in which a given entity has decided to address issues of energy development including energy conversion, distribution and use as well as reduction of greenhouse gas emissions in order to contribute to climate change mitigation. The attributes of energy policy may include legislation, international treaties, incentives to investment, guidelines for energy conservation, taxation and other public policy techniques. Energy is a core component of modern economies. A functioning economy requires not only labor and capital but also energy, for manufacturing processes, transportation, communication, agriculture, and more. Energy planning is more detailed than energy policy.

<span class="mw-page-title-main">Climate change mitigation</span> Actions to reduce net greenhouse gas emissions to limit climate change

Climate change mitigation is action to limit climate change. This action either reduces emissions of greenhouse gases or removes those gases from the atmosphere. The recent rise in global temperature is mostly due to emissions from burning fossil fuels such as coal, oil, and natural gas. There are various ways that mitigation can reduce emissions. These are transitioning to sustainable energy sources, conserving energy, and increasing efficiency. It is possible to remove carbon dioxide from the atmosphere. This can be done by enlarging forests, restoring wetlands and using other natural and technical processes. The name for these processes is carbon sequestration. Governments and companies have pledged to reduce emissions to prevent dangerous climate change. These pledges are in line with international negotiations to limit warming.

<span class="mw-page-title-main">Carbon footprint</span> Concept to quantify greenhouse gas emissions from activities or products

A carbon footprint (or greenhouse gas footprint) is a calculated value or index that makes it possible to compare the total amount of greenhouse gases that an activity, product, company or country adds to the atmosphere. Carbon footprints are usually reported in tonnes of emissions (CO2-equivalent) per unit of comparison. Such units can be for example tonnes CO2-eq per year, per kilogram of protein for consumption, per kilometer travelled, per piece of clothing and so forth. A product's carbon footprint includes the emissions for the entire life cycle. These run from the production along the supply chain to its final consumption and disposal.

<span class="mw-page-title-main">Energy policy of the European Union</span> Legislation in the area of energetics in the European Union

The energy policy of the European Union focuses on energy security, sustainability, and integrating the energy markets of member states. An increasingly important part of it is climate policy. A key energy policy adopted in 2009 is the 20/20/20 objectives, binding for all EU Member States. The target involved increasing the share of renewable energy in its final energy use to 20%, reduce greenhouse gases by 20% and increase energy efficiency by 20%. After this target was met, new targets for 2030 were set at a 55% reduction of greenhouse gas emissions by 2030 as part of the European Green Deal. After the Russian invasion of Ukraine, the EU's energy policy turned more towards energy security in their REPowerEU policy package, which boosts both renewable deployment and fossil fuel infrastructure for alternative suppliers.

<span class="mw-page-title-main">Greenhouse gas emissions</span> Sources and amounts of greenhouse gases emitted to the atmosphere from human activities

Greenhouse gas (GHG) emissions from human activities intensify the greenhouse effect. This contributes to climate change. Carbon dioxide, from burning fossil fuels such as coal, oil, and natural gas, is one of the most important factors in causing climate change. The largest emitters are China followed by the United States. The United States has higher emissions per capita. The main producers fueling the emissions globally are large oil and gas companies. Emissions from human activities have increased atmospheric carbon dioxide by about 50% over pre-industrial levels. The growing levels of emissions have varied, but have been consistent among all greenhouse gases. Emissions in the 2010s averaged 56 billion tons a year, higher than any decade before. Total cumulative emissions from 1870 to 2017 were 425±20 GtC from fossil fuels and industry, and 180±60 GtC from land use change. Land-use change, such as deforestation, caused about 31% of cumulative emissions over 1870–2017, coal 32%, oil 25%, and gas 10%.

<span class="mw-page-title-main">Greenhouse gas emissions by the United States</span> Climate changing gases from the North American country

The United States produced 5.2 billion metric tons of carbon dioxide equivalent greenhouse gas (GHG) emissions in 2020, the second largest in the world after greenhouse gas emissions by China and among the countries with the highest greenhouse gas emissions per person. In 2019 China is estimated to have emitted 27% of world GHG, followed by the United States with 11%, then India with 6.6%. In total the United States has emitted a quarter of world GHG, more than any other country. Annual emissions are over 15 tons per person and, amongst the top eight emitters, is the highest country by greenhouse gas emissions per person. However, the IEA estimates that the richest decile in the US emits over 55 tonnes of CO2 per capita each year. Because coal-fired power stations are gradually shutting down, in the 2010s emissions from electricity generation fell to second place behind transportation which is now the largest single source. In 2020, 27% of the GHG emissions of the United States were from transportation, 25% from electricity, 24% from industry, 13% from commercial and residential buildings and 11% from agriculture. In 2021, the electric power sector was the second largest source of U.S. greenhouse gas emissions, accounting for 25% of the U.S. total. These greenhouse gas emissions are contributing to climate change in the United States, as well as worldwide.

Efficient energy use, sometimes simply called energy efficiency, is the process of reducing the amount of energy required to provide products and services. For example, insulating a building allows it to use less heating and cooling energy to achieve and maintain a thermal comfort. Installing light-emitting diode bulbs, fluorescent lighting, or natural skylight windows reduces the amount of energy required to attain the same level of illumination compared to using traditional incandescent light bulbs. Improvements in energy efficiency are generally achieved by adopting a more efficient technology or production process or by application of commonly accepted methods to reduce energy losses.

The environmental effects of transport in Australia are considerable. Australia subsidizes fossil fuel energy, keeping prices artificially low and raising greenhouse gas emissions due to the increased use of fossil fuels as a result of the subsidies. The Australian Energy Regulator and state agencies such as the New South Wales' Independent Pricing and Regulatory Tribunal set and regulate electricity prices, thereby lowering production and consumer cost.

The Swiss Federal Laboratories for Materials Science and Technology is a Swiss research institution for application-oriented materials science and technology. It has three locations – Dübendorf, St. Gallen and Thun. As part of the ETH Domain, it is assigned to the Federal Department of Economic Affairs, Education and Research (EAER). For more than 100 years since its foundation in 1880, Empa has been a material testing institute. Since the late 1980s, it has increasingly transformed into an interdisciplinary research institute for materials and technologies.

<span class="mw-page-title-main">Energy in Switzerland</span> Overview of energy in Switzerland

Energy in Switzerland is transitioning towards sustainability, targeting net zero emissions by 2050 and a 50% reduction in greenhouse gas emissions by 2030.

The smart grids in South Korea constitute a platform that is re-imagining electricity grids, equipping it with technology that allows more capability, particularly in addressing the demands of the 21st century and the future. This process follows a modular approach to grid construction and focuses on the development of the IT-enabling of its electric power generation system. The country views the smart grids, along with the so-called "new energy industries", as an emergent pillar of the Korean economy.

<span class="mw-page-title-main">Aquasar</span> Supercomputer system from IBM Research

Aquasar is a supercomputer prototype created by IBM Labs in collaboration with ETH Zurich in Zürich, Switzerland and ETH Lausanne in Lausanne, Switzerland. While most supercomputers use air as their coolant of choice, the Aquasar uses hot water to achieve its great computing efficiency. Along with using hot water as the main coolant, an air-cooled section is also included to be used to compare the cooling efficiency of both coolants. The comparison could later be used to help improve the hot water coolant's performance. The research program was first termed to be: "Direct use of waste heat from liquid-cooled supercomputers: the path to energy saving, emission-high performance computers and data centers." The waste heat produced by the cooling system is able to be recycled back in the building's heating system, potentially saving money. Beginning in 2009, the three-year collaborative project was introduced and developed in the interest of saving energy and being environmentally-safe while delivering top-tier performance.

<span class="mw-page-title-main">Climate-smart agriculture</span> System for agricultural productivity

Climate-smart agriculture (CSA) is an integrated approach to managing land to help adapt agricultural methods, livestock and crops to the effects of climate change and, where possible, counteract it by reducing greenhouse gas emissions from agriculture, while taking into account the growing world population to ensure food security. The emphasis is not simply on carbon farming or sustainable agriculture, but also on increasing agricultural productivity.

<span class="mw-page-title-main">Greenhouse gas emissions from agriculture</span> Agricultures effects on climate change

The amount of greenhouse gas emissions from agriculture is significant: The agriculture, forestry and land use sector contribute between 13% and 21% of global greenhouse gas emissions. Agriculture contributes towards climate change through direct greenhouse gas emissions and by the conversion of non-agricultural land such as forests into agricultural land. Emissions of nitrous oxide and methane make up over half of total greenhouse gas emission from agriculture. Animal husbandry is a major source of greenhouse gas emissions.

<span class="mw-page-title-main">Climate change in the Netherlands</span> Emissions, impacts and responses of the Netherlands related to climate change

The Netherlands is already affected by climate change. The average temperature in the Netherlands rose by more than 2 °C from 1901 to 2020. Climate change has resulted in increased frequency of droughts and heatwaves. Because significant portions of the Netherlands have been reclaimed from the sea or otherwise are very near sea level, the Netherlands is very vulnerable to sea level rise.

<span class="mw-page-title-main">World energy supply and consumption</span> Global production and usage of energy

World energy supply and consumption refers to the global primary energy production, energy conversion and trade, and final consumption of energy. Energy can be used in various different forms, as processed fuels or electricity, or for various different purposes, like for transportation or electricity generation. Energy production and consumption are an important part of the economy. A serious problem concerning energy production and consumption is greenhouse gas emissions. Of about 50 billion tonnes worldwide annual total greenhouse gas emissions, 36 billion tonnes of carbon dioxide was emitted due to energy in 2021.

<span class="mw-page-title-main">Smart Living Lab</span> Swiss research centre focused on the build environment

The Smart Living Lab is an academic research and development center dedicated to contribute to the future of the built environment. Located in Fribourg in the Bluefactory innovation district, it is affiliated with the Switzerland Innovation Park Network West EPFL. This living lab focuses its research activities on human comfort and well-being in indoor spaces, environmental performance of buildings, and the digital transformation of the architecture, engineering and construction (AEC) industry.