Adaptive value

Last updated
The variation that can best adapted to their surroundings will survive. Evolution sm.png
The variation that can best adapted to their surroundings will survive.

The adaptive value represents the combined influence of all characters which affect the fitness of an individual or population.

Contents

Definition

Adaptive value is an essential concept of population genetics. It represents usefulness of a trait that can help an organism to survive in its environment. This heritable trait that can help offspring to cope with the new surrounding or condition is a measurable quantity. [2] Measuring adaptive value increases our understanding of how a trait helps an individual's or population's chances of survival in a particular set of conditions. [3]

Measurement

The adaptive value can be measured by contribution of an individual to the gene pool of their offspring. The adaptive values are approximately calculated from the rates of change in frequency and mutation–selection balance. [2]

Allele-frequency.png

Examples

Biston.betularia.7200.jpg
Biston betularia f. typica is the white-bodied form of the peppered moth.
Biston.betularia.f.carbonaria.7209.jpg
Biston betularia f. carbonaria is the black-bodied form of the peppered moth.

See also

Related Research Articles

<span class="mw-page-title-main">Asexual reproduction</span> Reproduction without a sexual process

Asexual reproduction is a type of reproduction that does not involve the fusion of gametes or change in the number of chromosomes. The offspring that arise by asexual reproduction from either unicellular or multicellular organisms inherit the full set of genes of their single parent and thus the newly created individual is genetically and physically similar to the parent or an exact clone of the parent. Asexual reproduction is the primary form of reproduction for single-celled organisms such as archaea and bacteria. Many eukaryotic organisms including plants, animals, and fungi can also reproduce asexually. In vertebrates, the most common form of asexual reproduction is parthenogenesis, which is typically used as an alternative to sexual reproduction in times when reproductive opportunities are limited. Komodo dragons and some monitor lizards can also reproduce asexually.

<span class="mw-page-title-main">Reproduction</span> Biological process by which new organisms are generated from one or more parent organisms

Reproduction is the biological process by which new individual organisms – "offspring" – are produced from their "parent" or parents. Reproduction is a fundamental feature of all known life; each individual organism exists as the result of reproduction. There are two forms of reproduction: asexual and sexual.

<span class="mw-page-title-main">Sex</span> Trait that determines an individuals sexually reproductive function

Sex is the trait that determines whether a sexually reproducing organism produces male or female gametes. Male plants and animals produce small mobile gametes, while females produce larger, non-motile ones. Organisms that produce both types of gametes are called hermaphrodites. During sexual reproduction, male and female gametes fuse to form zygotes, which develop into offspring that inherit traits from each parent.

<span class="mw-page-title-main">Polymorphism (biology)</span> Occurrence of two or more clearly different morphs or forms in the population of a species

In biology, polymorphism is the occurrence of two or more clearly different morphs or forms, also referred to as alternative phenotypes, in the population of a species. To be classified as such, morphs must occupy the same habitat at the same time and belong to a panmictic population.

<span class="mw-page-title-main">Evolution of sexual reproduction</span> How sexually reproducing multicellular organisms could have evolved from a common ancestor species

Sexual reproduction is an adaptive feature which is common to almost all multicellular organisms and various unicellular organisms, with some organisms being incapable of asexual reproduction. Currently the adaptive advantage of sexual reproduction is widely regarded as a major unsolved problem in biology. As discussed below, one prominent theory is that sex evolved as an efficient mechanism for producing variation, and this had the advantage of enabling organisms to adapt to changing environments. Another prominent theory, also discussed below, is that a primary advantage of outcrossing sex is the masking of the expression of deleterious mutations. Additional theories concerning the adaptive advantage of sex are also discussed below. Sex does, however, come with a cost. In reproducing asexually, no time nor energy needs to be expended in choosing a mate. And if the environment has not changed, then there may be little reason for variation, as the organism may already be well adapted. Sex also halves the amount of offspring a given population is able to produce. Sex, however, has evolved as the most prolific means of species branching into the tree of life. Diversification into the phylogenetic tree happens much more rapidly via sexual reproduction than it does by way of asexual reproduction.

<span class="mw-page-title-main">Anisogamy</span> Sexual reproduction involving a large, female gamete and a small, male gamete

Anisogamy is a form of sexual reproduction that involves the union or fusion of two gametes that differ in size and/or form. The smaller gamete is male, a sperm cell, whereas the larger gamete is female, typically an egg cell. Anisogamy is predominant among multicellular organisms. In both plants and animals gamete size difference is the fundamental difference between females and males.

<i>Heliconius charithonia</i> Species of butterfly

Heliconius charithonia, the zebra longwing or zebra heliconian, is a species of butterfly belonging to the subfamily Heliconiinae of the family Nymphalidae. It was first described by Carl Linnaeus in his 1767 12th edition of Systema Naturae. The boldly striped black and white wing pattern is aposematic, warning off predators.

<span class="mw-page-title-main">Plant defense against herbivory</span> Plants defenses against being eaten

Plant defense against herbivory or host-plant resistance (HPR) describes a range of adaptations evolved by plants which improve their survival and reproduction by reducing the impact of herbivores. Plants can sense being touched, and they can use several strategies to defend against damage caused by herbivores. Many plants produce secondary metabolites, known as allelochemicals, that influence the behavior, growth, or survival of herbivores. These chemical defenses can act as repellents or toxins to herbivores or reduce plant digestibility. Another defensive strategy of plants is changing their attractiveness. To prevent overconsumption by large herbivores, plants alter their appearance by changing their size or quality, overall decreasing their consumption rate.

Sexual mimicry occurs when one sex mimics the opposite sex in its behavior, appearance, or chemical signalling. It is more commonly seen within invertebrate species, although sexual mimicry is also seen among vertebrates such as spotted hyenas. Sexual mimicry is commonly used as a mating strategy to gain access to a mate, a defense mechanism to avoid more dominant individuals, or a survival strategy. It can also be a physical characteristic that establishes an individual's place in society. Sexual mimicry is employed differently across species and it is part of their strategy for survival and reproduction. Examples of sexual mimicry in animals include the spotted hyena, certain types of fish, passerine birds and some species of insect among others. These are cases of intraspecific sexual mimicry, but interspecific sexual mimicry can also occur in some plant species, especially orchids. In plants employing sexual mimicry, flowers mimic mating signals of their pollinator insects. These insects are attracted and pollinate the flowers through pseudocopulations or other sexual behaviors performed on the flower.

Sex allocation is the allocation of resources to male versus female reproduction in sexual species. Sex allocation theory tries to explain why many species produce equal number of males and females.

Plant reproduction is the production of new offspring in plants, which can be accomplished by sexual or asexual reproduction. Sexual reproduction produces offspring by the fusion of gametes, resulting in offspring genetically different from either parent. Asexual reproduction produces new individuals without the fusion of gametes, resulting in clonal plants that are genetically identical to the parent plant and each other, unless mutations occur.

<span class="mw-page-title-main">Sexual conflict</span> Term in evolutionary biology

Sexual conflict or sexual antagonism occurs when the two sexes have conflicting optimal fitness strategies concerning reproduction, particularly over the mode and frequency of mating, potentially leading to an evolutionary arms race between males and females. In one example, males may benefit from multiple matings, while multiple matings may harm or endanger females, due to the anatomical differences of that species. Sexual conflict underlies the evolutionary distinction between male and female.

Sex pheromones are pheromones released by an organism to attract an individual of the same species, encourage them to mate with them, or perform some other function closely related with sexual reproduction. Sex pheromones specifically focus on indicating females for breeding, attracting the opposite sex, and conveying information on species, age, sex and genotype. Non-volatile pheromones, or cuticular contact pheromones, are more closely related to social insects as they are usually detected by direct contact with chemoreceptors on the antennae or feet of insects.

<i>Scathophaga stercoraria</i> Species of fly

Scathophaga stercoraria, commonly known as the yellow dung fly or the golden dung fly, is one of the most familiar and abundant flies in many parts of the Northern Hemisphere. As its common name suggests, it is often found on the feces of large mammals, such as horses, cattle, sheep, deer, and wild boar, where it goes to breed. The distribution of S. stercoraria is likely influenced by human agriculture, especially in northern Europe and North America. The Scathophaga are integral in the animal kingdom due to their role in the natural decomposition of dung in fields. They are also very important in the scientific world due to their short life cycles and susceptibility to experimental manipulations; thus, they have contributed significant knowledge about animal behavior.

<span class="mw-page-title-main">Hermaphrodite</span> Organism that has complete or partial male and female reproductive organs

In reproductive biology, a hermaphrodite is an organism that has both kinds of reproductive organs and can produce both gametes associated with male and female sexes.

<span class="mw-page-title-main">Sexual reproduction</span> Reproduction process that creates a new organism by combining the genetic material of two organisms

Sexual reproduction is a type of reproduction that involves a complex life cycle in which a gamete with a single set of chromosomes combines with another gamete to produce a zygote that develops into an organism composed of cells with two sets of chromosomes (diploid). This is typical in animals, though the number of chromosome sets and how that number changes in sexual reproduction varies, especially among plants, fungi, and other eukaryotes.

Social selection is a term used with varying meanings in biology.

Autogamy, or self-fertilization, refers to the fusion of two gametes that come from one individual. Autogamy is predominantly observed in the form of self-pollination, a reproductive mechanism employed by many flowering plants. However, species of protists have also been observed using autogamy as a means of reproduction. Flowering plants engage in autogamy regularly, while the protists that engage in autogamy only do so in stressful environments.

This glossary of evolutionary biology is a list of definitions of terms and concepts used in the study of evolutionary biology, population biology, speciation, and phylogenetics, as well as sub-disciplines and related fields. For additional terms from related glossaries, see Glossary of genetics, Glossary of ecology, and Glossary of biology.

Cryptic mimicry is observed in animals as well as plants. In animals, this may involve nocturnality, camouflage, subterranean lifestyle, and mimicry. Generally, plant herbivores are visually oriented. So a mimicking plant should strongly resemble its host; this can be done through visual and/or textural change. Previous criteria for mimicry include similarity of leaf dimensions, leaf presentation, and intermodal distances between the host and mimicking plant.

References

  1. "Evolution".
  2. 1 2 Wallace, Bruce (September 1952). "The Estimation of Adaptive Values of Experimental Populations". Society for the Study of Evolution. 6 (3): 331–341.
  3. Moran & Lehet. "Visual Mimicry in Cephalopods". Reed College. Retrieved 25 November 2013.
  4. Kaplan, Ian (November 1, 2012). "Trophic Complexity and the Adaptive Value of Damage-Induced Plant Volatile". PLOS Biology. 10 (11): e1001437. doi:10.1371/journal.pbio.1001437. PMC   3507926 . PMID   23209381.
  5. Hanlon, Roger T.; Naud, Marié-Jose; Shaw, Paul W.; Havenhand, Jon N. (20 January 2005). "Behavioural ecology: Transient sexual mimicry leads to fertilization". Nature. 433 (7023): 212. Bibcode:2005Natur.433..212H. doi:10.1038/433212a. PMID   15662403. S2CID   1128929.