Alternaria

Last updated

Alternaria
Chain of conidia of an Alternaria sp. fungus PHIL 3963 lores.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Class: Dothideomycetes
Order: Pleosporales
Family: Pleosporaceae
Genus: Alternaria
Nees
Species

Many, see text

Alternaria is a genus of Deuteromycetes fungi. All species are known as major plant pathogens. They are also common allergens in humans, growing indoors and causing hay fever or hypersensitivity reactions that sometimes lead to asthma. They are present in the human mycobiome and readily cause opportunistic infections in immunocompromised people such as AIDS patients.

Contents

There were 299 species in the genus in 2012. [1] [2] They are ubiquitous in the environment and are a natural part of fungal flora almost everywhere. They are normal agents of decay and decomposition. The spores are airborne and found in the soil and water, as well as indoors and on objects. The club-shaped spores are single or form long chains. They can grow thick colonies which are usually green, black, or gray. [2]

At least 20% of agricultural spoilage is caused by Alternaria species, with the most severe losses reaching 80% of yield. [2] Many human health disorders can be caused by these fungi, which grow on skin and mucous membranes, including on the eyeballs and within the respiratory tract. Allergies are common, but serious infections are rare, except in people with compromised immune systems. However, species of this fungal genus are often prolific producers of a variety of toxic compounds. The effects most of these compounds have on animal and plant health are not well known. Many species of alternaria modify their secondary metabolites by sulfoconjugation; [3] however, the role of this process is not yet understood. The terms alternariosis and alternariatoxicosis are used for disorders in humans and animals caused by a fungus in this genus.

Not all Alternaria species are pests and pathogens; some have shown promise as biocontrol agents against invasive plant species. Some species have also been reported as endophytic microorganisms with highly bioactive metabolites. [4]

The genus is now known to be polyphyletic. [5]

Species

A 28-year-old man with alternariosis in his tibia caused by Alternaria arborescens and electron micrograph of his skin Alternariosis 3.jpg
A 28-year-old man with alternariosis in his tibia caused by Alternaria arborescens and electron micrograph of his skin

As of 5 August 2023, the GBIF lists up to 602 species, [7] while Species Fungorum lists about 645 species. [8]

A selected few species are shown here.

Related Research Articles

Blight refers to a specific symptom affecting plants in response to infection by a pathogenic organism.

<span class="mw-page-title-main">Leaf spot</span> Damaged areas of leaves

A leaf spot is a limited, discoloured, diseased area of a leaf that is caused by fungal, bacterial or viral plant diseases, or by injuries from nematodes, insects, environmental factors, toxicity or herbicides. These discoloured spots or lesions often have a centre of necrosis. Symptoms can overlap across causal agents, however differing signs and symptoms of certain pathogens can lead to the diagnosis of the type of leaf spot disease. Prolonged wet and humid conditions promote leaf spot disease and most pathogens are spread by wind, splashing rain or irrigation that carry the disease to other leaves.

<i>Withania somnifera</i> Species of plant

Withania somnifera, known commonly as ashwagandha or winter cherry, is an evergreen shrub in the Solanaceae or nightshade family that grows in India, the Middle East, and parts of Africa. Several other species in the genus Withania are morphologically similar.

<i>Cercospora</i> Genus of fungi

Cercospora is a genus of ascomycete fungi. Most species have no known sexual stage, and when the sexual stage is identified, it is in the genus Mycosphaerella. Most species of this genus cause plant diseases, and form leaf spots. It is a relatively well-studied genus of fungi, but there are countless species not yet described, and there is still much to learn about the best-known members of the genus.

<span class="mw-page-title-main">Damping off</span> Horticultural disease or condition

Damping off is a horticultural disease or condition, caused by several different pathogens that kill or weaken seeds or seedlings before or after they germinate. It is most prevalent in wet and cool conditions.

<i>Alternaria alternata</i> Pathogenic fungus

Alternaria alternata is a fungus causing leaf spots, rots, and blights on many plant parts, and other diseases. It is an opportunistic pathogen on over 380 host species of plant.

Alternaria japonica is a fungal plant pathogen. It is a cause of black spot disease in cruciferous plants. It is not a major source of crop loss, but is considered dangerous for plants during the seedling stage.

Alternaria triticina is a fungal plant pathogen that causes leaf blight on wheat. A. triticina is responsible for the largest leaf blight issue in wheat and also causes disease in other major cereal grain crops. It was first identified in India in 1962 and still causes significant yield loss to wheat crops on the Indian subcontinent. The disease is caused by a fungal pathogen and causes necrotic leaf lesions and in severe cases shriveling of the leaves.

Alternaria carthami is a necrotrophic plant pathogen of safflower. The fungus is in the order Pleosporales and family Pleosporaceae. It was first isolated in India, has spread globally and can have devastating effects on safflower yield, and resultant oilseed production. A. carthami is known to be seed-borne and appears as irregular brown lesions on safflower leaves and stems.

Alternaria citri is a fungal plant pathogen that causes black rot in citrus plants.

Alternaria dauci is a plant pathogen. The English name of the disease it incites is "carrot leaf blight".

Alternaria dianthicola is a fungal plant pathogen, including Withania somnifera tree leaves in India.

<i>Alternaria solani</i> Species of fungus

Alternaria solani is a fungal pathogen that produces a disease in tomato and potato plants called early blight. The pathogen produces distinctive "bullseye" patterned leaf spots and can also cause stem lesions and fruit rot on tomato and tuber blight on potato. Despite the name "early," foliar symptoms usually occur on older leaves. If uncontrolled, early blight can cause significant yield reductions. Primary methods of controlling this disease include preventing long periods of wetness on leaf surfaces and applying fungicides. Early blight can also be caused by Alternaria tomatophila, which is more virulent on stems and leaves of tomato plants than Alternaria solani.

Nigrospora sphaerica is an airborne filamentous fungus in the phylum Ascomycota. It is found in soil, air, and plants as a leaf pathogen. It can occur as an endophyte where it produces antiviral and antifungal secondary metabolites. Sporulation of N. sphaerica causes its initial white coloured colonies to rapidly turn black. N. sphaerica is often confused with the closely related species N. oryzae due to their morphological similarities.

Alternaria helianthi is a fungal plant pathogen causing a disease in sunflowers known as Alternaria blight of sunflower.

This article summarizes different crops, what common fungal problems they have, and how fungicide should be used in order to mitigate damage and crop loss. This page also covers how specific fungal infections affect crops present in the United States.

<i>Withania coagulans</i> Species of flowering plant

Withania coagulans is a plant in the Solanaceae or nightshade family, native to Afghanistan, Pakistan and the Indian subcontinent. Within the genus Withania, W. somnifera (Ashwagandha) and W. coagulans are economically significant, and are cultivated in several regions for their use in Ayurveda. It is claimed to help control diabetes. The berries contain a rennet-like protease that can be used to clot milk for cheese production. The plant is prone to leaf spot disease caused by Alternaria alternata.

<i>Alternaria brassicicola</i> Species of fungus

Alternaria brassicicola is a fungal necrotrophic plant pathogen that causes black spot disease on a wide range of hosts, particularly in the genus of Brassica, including a number of economically important crops such as cabbage, Chinese cabbage, cauliflower, oilseeds, broccoli and canola. Although mainly known as a significant plant pathogen, it also contributes to various respiratory allergic conditions such as asthma and rhinoconjunctivitis. Despite the presence of mating genes, no sexual reproductive stage has been reported for this fungus. In terms of geography, it is most likely to be found in tropical and sub-tropical regions, but also in places with high rain and humidity such as Poland. It has also been found in Taiwan and Israel. Its main mode of propagation is vegetative. The resulting conidia reside in the soil, air and water. These spores are extremely resilient and can overwinter on crop debris and overwintering herbaceous plants.

<span class="mw-page-title-main">Alternaria leaf spot</span> Fungal plant disease

Alternaria leaf spot or Alternaria leaf blight are a group of fungal diseases in plants, that have a variety of hosts. The diseases infects common garden plants, such as cabbage, and are caused by several closely related species of fungi. Some of these fungal species target specific plants, while others have been known to target plant families. One commercially relevant plant genus that can be affected by Alternaria Leaf Spot is Brassica, as the cosmetic issues caused by symptomatic lesions can lead to rejection of crops by distributors and buyers. When certain crops such as cauliflower and broccoli are infected, the heads deteriorate and there is a complete loss of marketability. Secondary soft-rotting organisms can infect stored cabbage that has been affected by Alternaria Leaf Spot by entering through symptomatic lesions. Alternaria Leaf Spot diseases that affect Brassica species are caused by the pathogens Alternaria brassicae and Alternaria brassicicola.

<span class="mw-page-title-main">Sporocadaceae</span> Family of fungi

The Sporocadaceae are a family of fungi, that was formerly in the order Xylariales. It was placed in the Amphisphaeriales order in 2020.

References

  1. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008). Dictionary of the Fungi. 10th ed. Wallingford: CABI. p. 22. ISBN   978-0-85199-826-8.
  2. 1 2 3 4 5 Nowicki, Marcin; et al. (30 August 2012). "Alternaria black bpot of crucifers: Symptoms, importance of disease, and perspectives of resistance breeding". Vegetable Crops Research Bulletin. 76 (2012): 5–19. doi: 10.2478/v10032-012-0001-6 .
  3. Kelman, MJ; Renaud, JB; Seifert, KA; Mack, J; Sivagnanam, K; Yeung, KK; Sumarah, MW (15 October 2015). "Identification of six new Alternaria sulfoconjugated metabolites by high-resolution neutral loss filtering". Rapid Commun Mass Spectrom. 29 (19): 1805–1810. Bibcode:2015RCMS...29.1805K. doi:10.1002/rcm.7286. PMID   26331931.
  4. Karwehl S, Stadler M (July 2016). "Exploitation of fungal biodiversity for discovery of novel antibiotics". Current Topics in Microbiology and Immunology. 398: 303–338. doi:10.1007/82_2016_496. ISBN   978-3-319-49282-7. PMID   27422786.
  5. Aschehoug, Erik T.; Metlen, Kerry L.; Callaway, Ragan M.; Newcombe, George (2012). "Fungal endophytes directly increase the competitive effects of an invasive forb". Ecology. 93 (1): 3–8. doi: 10.1890/11-1347.1 . PMID   22486080.
  6. Ran Yuping (2016). "Observation of Fungi, Bacteria, and Parasites in Clinical Skin Samples Using Scanning Electron Microscopy". In Janecek, Milos; Kral, Robert (eds.). Modern Electron Microscopy in Physical and Life Sciences. InTech. doi:10.5772/61850. ISBN   978-953-51-2252-4. S2CID   53472683.
  7. "Alternaria Nees ex Wallroth, 1816". www.gbif.org. Retrieved 28 July 2023.
  8. "Species Fungorum - Search Page - Alternaria". www.speciesfungorum.org. Retrieved 5 August 2023.
  9. Pati, Pratap Kumar; Sharma, Monica; Salar, Raj Kumar; Sharma, Ashutosh; Gupta, A. P.; Singh, B. (8 January 2009). "Studies on leaf spot disease of Withania somnifera and its impact on secondary metabolites". Indian Journal of Microbiology. 48 (4): 432–437. doi:10.1007/s12088-008-0053-y. PMC   3476785 . PMID   23100743.
  10. Evans, N.; McRoberts, N.; Hill, R.A.; Marshall, G. (1996). "Phytotoxin production by Alternaria linicola and phytoalexin production by the linseed host". Ann. Appl. Biol. 129 (3): 415–431. doi:10.1111/j.1744-7348.1996.tb05765.x.

Other sources