Amplectobelua

Last updated

Amplectobelua
Temporal range: Cambrian Stage 3, 518  Ma [1]
O
S
D
C
P
T
J
K
Pg
N
20191201 Amplectobelua symbrachiata.png
Reconstruction of Amplectobelua symbrachiata
Head carapace, gnathobase-like structures and body flaps of A. symbrachiata.png
Fossil specimen, showing frontal appendages, head carapace, gnathobase-like structures and body flaps
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Dinocaridida
Order: Radiodonta
Clade: Amplectobeluidae
Genus: Amplectobelua
Hou, Bergström & Ahlberg, 1995
Species
  • A. symbrachiataHou, Bergström & Ahlberg, 1995
  • A. stephenensisDaley & Budd, 2010

Amplectobelua (meaning "embracing beast") is an extinct genus of late Early Cambrian amplectobeluid radiodont, a group of stem arthropods that mostly lived as free-swimming predators during the first half of the Paleozoic Era.

Contents

Anatomy

Size comparison of two species 20210214 Amplectobelua size comparison.png
Size comparison of two species

Amplectobelua was a giant radiodont, A. symbrachiata had body length (without frontal appendages and tail) reaching up to 90 cm (3.0 ft). [2] [3] The body structures other than frontal appendages are only known from the type species Amplectobelua symbrachiata. Like other radiodonts, Amplectobelua had a pair of jointed frontal appendages, a head covered by dorsal and lateral sclerites (the latter had been misinterpreted as huge eyes [4] ), a limbless body with dorsal gills (setal blades), and a series of flaps on both sides that extended along the length of its body.

Amplectobelua had a specialized frontal appendage, in which it has a distinct 3-segmented shaft region and 12-segmented distal articulated region, and the spine on the fourth segment (first segment of distal articulated region) hooked forward to oppose the tip of the appendage, allowing it to grasp prey like a pincer. Amplectobelua had 11 pairs of body flaps in total, they are relatively elongated and straight in outline. The size of the flaps decrease posteriory, and each of their frontal margin have rows of vein-like structures (strengthening rays). The neck region have at least 3 pairs of slender, reduced anterior flaps. [4] The trunk terminated with a pair of long furcae (streamers).

Amplectobelua shares a unique feature among radiodonts with Ramskoeldia , in having gnathobase-like structures (GLSs) underneath its neck region, at least 6, up to eight. They functioned like the gnathobases of arthropods, being able to rotate and move to shred prey. They were connected to reduced anterior flaps. Additionally, the mouth (oral cone) of Amplectobelua were interpreted as different from typical radiodont, lacking the typical Peytoia -style oral cone and possessing numerous flat tooth-plates with unclear, but possibly non-radial arrangement. [4]

Species

Two species are known, Amplectobelua symbrachiata from the Chengjiang biota and Amplectobelua stephenensis from the later Burgess Shale. [5] A. symbrachiata is known from complete specimens, while A. stephenensis is known only from isolated frontal appendages. A. stephenensis is more advanced, with the frontal appendages being more specialized for grasping: the fourth spine is larger and the spines on outer segments are reduced. A. symbrachiata is previously named as a species of Anomalocaris , Anomalocaris trispinata in 1992, before description of A. symbrachiata. [3] Some studies considered that name Amplectobelua trispinata should be used instead of A. symbrachiata. [6] [7]

Ecology

The movement of the frontal appendages of A. stephenensis 20210812 Amplectobelua stephenensis frontal appendage mobility.gif
The movement of the frontal appendages of A. stephenensis

Amplectobelua was likely nektonic predator. [2] Its frontal appendages were worked like pincers to pinch prey. Its structure was suitable to firmly grasp and manipulate prey to the mouth or tearing off pieces from larges carcasses. [8] Gnathobase-like structures were probably used to chew preys. [4] Research of 432 specimens resulted that it would be an extremely fast-growing animal for an arthropod. [3]

See also

Related Research Articles

<i>Sidneyia</i> Extinct genus of arthropods

Sidneyia is an extinct arthropod known from fossils found from the Early to the Mid Cambrian of China and the Mid Cambrian Burgess Shale of British Columbia, Canada.

<span class="mw-page-title-main">Dinocaridida</span> Extinct class of basal arthropods

Dinocaridida is a proposed fossil taxon of basal arthropods that flourished in the Cambrian period with occasional Ordovician and Devonian records. Characterized by a pair of frontal appendages and series of body flaps, the name of Dinocaridids refers to the suggested role of some of these members as the largest marine predators of their time. Dinocaridids are occasionally referred to as the 'AOPK group' by some literatures, as the group compose of Radiodonta, Opabiniidae, and the "gilled lobopodians" Pambdelurion and Kerygmachelidae. It is most likely paraphyletic, with Kerygmachelidae and Pambdelurion more basal than the clade compose of Opabiniidae, Radiodonta and other arthropods.

<i>Anomalocaris</i> Extinct genus of cambrian radiodont

Anomalocaris is an extinct genus of radiodont, an order of early-diverging stem-group arthropods.

<i>Peytoia</i> Extinct genus of radiodont

Peytoia is a genus of hurdiid radiodont, an early diverging order of stem-group arthropods, that lived in the Cambrian period, containing two species, Peytoia nathorsti from the Miaolingian of Canada and Peytoia infercambriensis from Poland, dating to Cambrian Stage 3. Its two frontal appendages had long bristle-like spines, it had no fan tail, and its short stalked eyes were behind its large head.

<span class="mw-page-title-main">Anomalocarididae</span> Clade of extinct arthropods

Anomalocarididae is an extinct family of Cambrian radiodonts, a group of stem-group arthropods.

<i>Kerygmachela</i> Extinct gilled lobopod

Kerygmachela kierkegaardi is a kerygmachelid gilled lobopodian from the Cambrian Stage 3 aged Sirius Passet Lagerstätte in northern Greenland. Its anatomy strongly suggests that it, along with its relative Pambdelurion whittingtoni, was a close relative of radiodont and euarthropods. The generic name "Kerygmachela" derives from the Greek words Kerygma (proclamation) and Chela (claw), in reference to the flamboyant frontal appendages. The specific name, "kierkegaardi" honors Danish philosopher Søren Kierkegaard.

<i>Parapeytoia</i> Extinct genus of arthropods

Parapeytoia is a genus of Cambrian arthropod. The type and only described species is Parapeytoia yunnanensis, lived over 518 million years ago in the Maotianshan shales of Yunnan, China. Unidentified fossils from the same genus also had been discovered from the nearby Wulongqing Formation.

<i>Peytoia infercambriensis</i> Extinct species of arthropod

Peytoia infercambriensis is a species of hurdiid radiodont in the genus Peytoia.

A number of assemblages bear fossil assemblages similar in character to that of the Burgess Shale. While many are also preserved in a similar fashion to the Burgess Shale, the term "Burgess Shale-type fauna" covers assemblages based on taxonomic criteria only.

<i>Isoxys</i> Genus of extinct arthropods

Isoxys is a genus of extinct bivalved Cambrian arthropod; the various species of which are thought to have been freely swimming predators. It had a pair of large spherical eyes, and two large frontal appendages used to grasp prey.

<span class="mw-page-title-main">Radiodonta</span> Extinct order of basal arthropods

Radiodonta is an extinct order of stem-group arthropods that was successful worldwide during the Cambrian period. They may be referred to as radiodonts, radiodontans, radiodontids, anomalocarids, or anomalocaridids, although the last two originally refer to the family Anomalocarididae, which previously included all species of this order but is now restricted to only a few species. Radiodonts are distinguished by their distinctive frontal appendages, which are morphologically diverse and used for a variety of functions. Radiodonts included the earliest large predators known, but they also included sediment sifters and filter feeders. Some of the most famous species of radiodonts are the Cambrian taxa Anomalocaris canadensis, Hurdia victoria, Peytoia nathorsti, Titanokorys gainessii, Cambroraster falcatus and Amplectobelua symbrachiata, the Ordovician Aegirocassis benmoulai and the Devonian Schinderhannes bartelsi.

<i>Hurdia</i> Extinct genus of radiodonts

Hurdia is an extinct genus of hurdiid radiodont that lived 505 million years ago during the Cambrian Period. Fossils have been found in North America, China and the Czech Republic.

<i>Kiisortoqia</i> Extinct genus of arthropods

Kiisortoqia soperi is an extinct species of arthropod from the Early Cambrian Sirius Passet Lagerstätte in Greenland. While it had a superficially trilobite-like bodyform, it also possessed large frontal appendages similar to those of radiodonts.

<span class="mw-page-title-main">Tamisiocarididae</span> Clade of extinct arthropods

Tamisiocarididae is a family of radiodonts, extinct marine animals related to arthropods, that bore finely-spined appendages that were presumably used in filter-feeding. When first discovered, the clade was named Cetiocaridae after a speculative evolution artwork, Bearded Ceticaris by John Meszaros, that depicted a hypothetical filter-feeding radiodont at a time before any were known to exist. However, the family name was not valid according to the International Code of Zoological Nomenclature, as no real genus named "Cetiocaris" exists, and in 2019 it was formally replaced by the name Tamisiocarididae, after the only valid genus of the clade at the time. The family is only known from Series 2 of the Cambrian, unlike other radiodont families, which persisted longer into the Cambrian. All known species would have lived in tropical or subtropical waters, suggesting a preference for warmer waters.

<span class="mw-page-title-main">Amplectobeluidae</span> Extinct clade of Cambrian organisms

Amplectobeluidae is a clade of Cambrian radiodonts. It currently includes five definitive genera, Amplectobelua, Lyrarapax, Ramskoeldia, Guanshancaris and a currently unnamed genus from the lower Cambrian aged Sirius Passet site in Greenland. There is also a potential fifth genus, Houcaris, but that genus has become problematic in terms of its taxonomic placement.

<span class="mw-page-title-main">Hurdiidae</span> Extinct family of arthropods

Hurdiidae is an extinct cosmopolitan family of radiodonts, a group of stem-group arthropods, which lived during the Paleozoic Era. It is the most long-lived radiodont clade, lasting from the Cambrian period to the Devonian period.

<i>Ramskoeldia</i>

Ramskoeldia is a genus of amplectobeluid radiodont described in 2018. It was the second genus of radiodont found to possess gnathobase-like structures and an atypical oral cone after Amplectobelua. It was discovered in the Chengjiang biota of China, the home of numerous radiodontids such as Amplectobelua and Lyrarapax.

<i>Titanokorys</i> Extinct genus of giant hurdiid radiodont

Titanokorys is a genus of extinct hurdiid radiodont that existed during the mid Cambrian. It is the largest member of its family from the Cambrian, with a body length of 50 cm (20 in) long, making it one of the largest animals of the time. It bears a resemblance to the related genus Cambroraster. Fossils of T. gainesi were first found within Marble Canyon in 2018. The fossils were not named until 2021 because they were assumed to be giant specimens of Cambroraster.

<i>Erratus</i> Extinct genus of Cambrian arthropod

Erratus is an extinct genus of marine arthropod from the Cambrian of China. Its type and only species is Erratus sperare. Erratus is likely one of the most basal known arthropods, and its discovery has helped scientists understand the early evolution of arthropod trunk appendages. Some of the stem-arthropods like radiodonts did not have legs, instead they had flap like appendages that helped them swim. Erratus on the other hand had not only flaps but also a set of primitive legs. It also supported the theory that the gills of aquatic arthropods probably evolved into the wings and lungs of terrestrial arthropods later in the Paleozoic.

<i>Laminacaris</i> Genus of extinct arthropods

Laminacaris is a genus of extinct stem-group arthropods (Radiodonta) that lived during the Cambrian period. It is monotypic with a single species Laminacaris chimera, the fossil of which was described from the Chengjiang biota of China in 2018. Around the same time, two specimens that were similar or of the same species were discovered at the Kinzers Formation in Pennsylvania, USA. The first specimens from China were three frontal appendages, without the other body parts.

References

  1. Yang, C.; Li, X.-H.; Zhu, M.; Condon, D. J.; Chen, J. (2018). "Geochronological constraint on the Cambrian Chengjiang biota, South China" (PDF). Journal of the Geological Society. 175 (4): 659–666. Bibcode:2018JGSoc.175..659Y. doi:10.1144/jgs2017-103. ISSN   0016-7649. S2CID   135091168.
  2. 1 2 Lerosey-Aubril R, Pates S (September 2018). "New suspension-feeding radiodont suggests evolution of microplanktivory in Cambrian macronekton". Nature Communications. 9 (1): 3774. Bibcode:2018NatCo...9.3774L. doi:10.1038/s41467-018-06229-7. PMC   6138677 . PMID   30218075.
  3. 1 2 3 Wu, Yu; Pates, Stephen; Pauly, Daniel; Zhang, Xingliang; Fu, Dongjing (2023-11-03). "Rapid growth in a large Cambrian apex predator". National Science Review. doi: 10.1093/nsr/nwad284 . ISSN   2095-5138.
  4. 1 2 3 4 Cong, Peiyun; Daley, A. C.; Edgecombe, Gregory D.; Hou, Xianguang (2017). "The functional head of the Cambrian radiodontan (stem-group Euarthropoda) Amplectobelua symbrachiata". BMC Evolutionary Biology. 17 (208): 208. doi: 10.1186/s12862-017-1049-1 . PMC   5577670 . PMID   28854872.
  5. Daley, A. C.; Budd, G. E. (2010). "New anomalocaridid appendages from the Burgess Shale, Canada". Palaeontology. 53 (4): 721. Bibcode:2010Palgy..53..721D. doi: 10.1111/j.1475-4983.2010.00955.x .
  6. Steiner, Michael; Zhu, Maoyan; Zhao, Yuanlong; Erdtmann, Bernd-Dietrich (2005-05-02). "Lower Cambrian Burgess Shale-type fossil associations of South China". Palaeogeography, Palaeoclimatology, Palaeoecology. Interpretation of Biological and Environmental Changes across the Neoproterozoic-Cambrian Boundary. 220 (1): 129–152. doi:10.1016/j.palaeo.2003.06.001. ISSN   0031-0182.
  7. McCall, Christian R. A. (2023). "A large pelagic lobopodian from the Cambrian Pioche Shale of Nevada". Journal of Paleontology. 97 (5): 1009–1024. doi:10.1017/jpa.2023.63. ISSN   0022-3360.
  8. De Vivo, Giacinto; Lautenschlager, Stephan; Vinther, Jakob (2021-07-28). "Three-dimensional modelling, disparity and ecology of the first Cambrian apex predators". Proceedings of the Royal Society B: Biological Sciences. 288 (1955): 20211176. doi:10.1098/rspb.2021.1176. ISSN   0962-8452. PMC   8292756 . PMID   34284622.