Aphelidium

Last updated

Aphelidium
Scientific classification
Domain:
(unranked):
(unranked):
Kingdom:
Phylum:
Class:
Order:
Family:
Genus:
Aphelidium

Zopf 1885 em. Gromov 2000
Type species
Aphelidium deformans
Zopf 1885
Species [1] [2]

See text

Aphelidium species are endoparasites of freshwater green algae. Aphelidium belongs to the phylum Aphelida, and is part of the Opisthosporidia, a sister clade to Fungi. [3] The cells of Aphelidium are much smaller than the cells of its green algae host, which is protected by a robust cell wall. Aphelidium have evolved a remarkable life cycle to defeat host's defenses.

Contents

The infection process for Aphelidium is notable for its method of entry. An Aphelidium cyst attached to a potential host will raise its internal pressure by expanding the posterior vacuole before using the sudden release of this pressure to defeat the host cell wall and jet itself into the host. [3] As parasites of green algae, Aphelidium have important implications for the production of biofuels using algaculture. [4]

History of research

Aphelidium was first described in 1885 by Wilhelm Zopf, however the current phylogenetic organisation was not solidified until the 2010s. [3] In the first half of the 20th century, Aphelidium was put in the Monadinea group, a group of organisms with life cycles resembling a fungus but have amoebic trophic stages. [3] Beginning from the 1950s Aphelidium were included in class Rhizopoda, and for the rest of the 20th century while studies in Aphelidium life cycles and ecology continued Aphelidium was not included in the updated phylogenetic classifications. [3] Interest in classifying Aphelidium renewed in the 21st century when class Aphelidea was established by Gromov, which includes Aphelidium, Amoeboaphelidium, and Pseudaphelidium. [3] rRNA analysis provided the needed resolution for Aphelidium’s position in the phylogenetic tree, placing it with Cryptomycota (Rozella and the like), and Microsporidia to form the ARM branch. [3] The ARM branch, also known as the Opisthosporidia, forms a monophyletic sister group to fungi. [3]

Typical Aphelidium life cycle. Depicts infection of Scenedesmus sp. Aphelidium Life Cycle.jpg
Typical Aphelidium life cycle. Depicts infection of Scenedesmus sp.

Ecology and life cycle

All known examples of Aphelidium are obligate parasites of freshwater phytoplankton. [3] [5] As parasites, the life cycle of Aphelidium is closely tied to its ecological relationship with its hosts. The cycle begins with the motile Aphelidium zoospore contacting its host, a green alga. [3] The singular flagellum of the zoospore is lost as part of the attachment process. [3] A pseudopodium extends from the zoospore and probes the host surface, seeking a weakness or gap in the cell wall. [6] The attached zoospore first encysts then inserts an infection tube into the host cell, priming the ingress of the Aphelidium. [3] The cyst forms a posterior vacuole, which expands and raises the internal pressure of the cyst. [3] Ultimately the pressure pushing against the chitin wall of the cyst punctures the cell wall of the host green alga at the point of insertion of the infection tube, and the Aphelidium enters its host abruptly, leaving the cyst cell wall behind. [3]

Once within the host, Aphelidium becomes an amoeboid that proceeds to consume the host from the inside out by phagocytizing host cytoplasm before digesting it internally in a central digestive vacuole. [7] As the parasite expands within the host cell, it develops into a multinucleate plasmodium which grows to eventually replace the entirety of the host cytoplasm. [3] Now all that remains of the green alga is its cell wall and the residual body, a clump consisting of host cell fragments indigestible to the parasite. The Aphelidium plasmodium then proceeds to divide into uninucleate cells which develop into zoospores, using the cell wall of the host alga as a sporangium. [3] Finally, the uniflagellate zoospores erupt the husk of the host cell via the same puncture made by the infection tube of the parent Aphelidium to seek new green alga hosts. [3]

Practical importance

Microalgae are candidates for biofuel production, thanks to their fast generation times and low space requirements. In the high-density environment of algal agriculture, parasites can quickly propagate and devastate the algae population, which makes algal endoparasites such as Aphelidium important targets for study. [4]

List of species


Related Research Articles

<i>Plasmodium</i> Genus of parasitic protists that can cause malaria

Plasmodium is a genus of unicellular eukaryotes that are obligate parasites of vertebrates and insects. The life cycles of Plasmodium species involve development in a blood-feeding insect host which then injects parasites into a vertebrate host during a blood meal. Parasites grow within a vertebrate body tissue before entering the bloodstream to infect red blood cells. The ensuing destruction of host red blood cells can result in malaria. During this infection, some parasites are picked up by a blood-feeding insect, continuing the life cycle.

<span class="mw-page-title-main">Zooxanthellae</span> Dinoflagellates in symbiosis with coral, jellyfish and nudibranchs

Zooxanthellae is a colloquial term for single-celled dinoflagellates that are able to live in symbiosis with diverse marine invertebrates including demosponges, corals, jellyfish, and nudibranchs. Most known zooxanthellae are in the genus Symbiodinium, but some are known from the genus Amphidinium, and other taxa, as yet unidentified, may have similar endosymbiont affinities. The true Zooxanthella K.brandt is a mutualist of the radiolarian Collozoum inerme and systematically placed in Peridiniales. Another group of unicellular eukaryotes that partake in similar endosymbiotic relationships in both marine and freshwater habitats are green algae zoochlorellae.

<i>Chlamydomonas nivalis</i> Species of alga

Chlamydomonas nivalis, also referred to as Chloromonas typhlos, is a unicellular red-coloured photosynthetic green alga that is found in the snowfields of the alps and polar regions all over the world. They are one of the main algae responsible for causing the phenomenon of watermelon snow, where patches of snow appear red or pink. The first account of microbial communities that form red snow was made by Aristotle. Researchers have been active in studying this organism for over 100 years.

An apicoplast is a derived non-photosynthetic plastid found in most Apicomplexa, including Toxoplasma gondii, and Plasmodium falciparum and other Plasmodium spp., but not in others such as Cryptosporidium. It originated from algae through secondary endosymbiosis; there is debate as to whether this was a green or red alga. The apicoplast is surrounded by four membranes within the outermost part of the endomembrane system. The apicoplast hosts important metabolic pathways like fatty acid synthesis, isoprenoid precursor synthesis and parts of the heme biosynthetic pathway.

<i>Bryopsis</i> Genus of algae

Bryopsis is a genus of marine green algae in the family Bryopsidaceae. It is frequently a pest in aquariums, where it is commonly referred to as hair algae.

<i>Pediastrum</i> Genus of algae

Pediastrum is a genus of green algae, in the family Hydrodictyaceae. It is a photoautotrophic, nonmotile coenobial green alga that inhabits freshwater environments.

<i>Schroederia</i> (alga) Genus of algae

Schroederia is a genus of green algae in the family Schroederiaceae. Schroederiaceae is a monotypic taxon; Schroederia is its only genus.

Korshikoviella is a genus of green algae in the family Characiaceae.

<i>Colpodella</i> Genus of single-celled organisms

Colpodella is a genus of alveolates comprising 5 species, and two further possible species: They share all the synapomorphies of apicomplexans, but are free-living, rather than parasitic. Many members of this genus were previously assigned to a different genus - Spiromonas.

The genus Labyrinthula is part of the protist group Labyrinthulomycetes and contains thirteen species. The major feature of this genus is the formation of an ectoplasmic net secreted by specialized organelles called bothrosomes which surrounds the colony, which is also used by Labyrinthula for moving. The protist reproduces by zoosporulation as it sets some flagellated spores free from a sporangium. One of the flagella of the zoospores has stiff tripartite hairs (mastigonemes) - the defining characteristic of the stramenopiles.

<span class="mw-page-title-main">Apicomplexan life cycle</span> Apicomplexa life cycle

Apicomplexans, a group of intracellular parasites, have life cycle stages that allow them to survive the wide variety of environments they are exposed to during their complex life cycle. Each stage in the life cycle of an apicomplexan organism is typified by a cellular variety with a distinct morphology and biochemistry.

<i>Rozella</i> Genus of fungi

Rozella is a fungal genus of obligate endoparasites of a variety of hosts, including Oomycota, Chytridiomycota, and Blastocladiomycota. Rozella was circumscribed by French mycologist Marie Maxime Cornu in 1872. Considered one of the earliest diverging lineages of fungi, the widespread genus contains 27 species, with the most well studied being Rozella allomycis. Rozella is a member of a large clade of fungi referred to as the Cryptomycota/Rozellomycota. While some can be maintained in dual culture with the host, most have not been cultured, but they have been detected, using molecular techniques, in soil samples, and in freshwater and marine ecosystems. Zoospores have been observed, along with cysts, and the cells of some species are attached to diatoms.

<span class="mw-page-title-main">Holomycota</span> Clade containing fungi and some protists

Holomycota or Nucletmycea are a basal Opisthokont clade as sister of the Holozoa. It consists of the Cristidiscoidea and the kingdom Fungi. The position of nucleariids, unicellular free-living phagotrophic amoebae, as the earliest lineage of Holomycota suggests that animals and fungi independently acquired complex multicellularity from a common unicellular ancestor and that the osmotrophic lifestyle was originated later in the divergence of this eukaryotic lineage. Opisthosporidians is a recently proposed taxonomic group that includes aphelids, Microsporidia and Cryptomycota, three groups of endoparasites.

<span class="mw-page-title-main">Rozellida</span> Clade of microscopic fungi

Cryptomycota , Rozellida, or Rozellomycota are a clade of micro-organisms that are either fungi or a sister group to fungi. They differ from classical fungi in that they lack chitinous cell walls at any trophic stage in their lifecycle, as reported by Jones and colleagues in 2011. Despite their unconventional feeding habits, chitin has been observed in the inner layer of resting spores, and in immature resting spores for some species of Rozella, as indicated with calcofluor-white stain as well as the presence of a fungal-specific chitin synthase gene.

Parvilucifera is a genus of marine alveolates that parasitise dinoflagellates. Parvilucifera is a parasitic genus described in 1999 by Norén et al. It is classified perkinsozoa in the supraphylum of Alveolates. This taxon serves as a sister taxon to the dinoflagellates and apicomplexans. Thus far, five species have been described in this taxon, which include: P.infectans, P.sinerae, P.corolla, P.rostrata, and P.prorocentri. The genus Parvilucifera is morphologically characterized by flagellated zoospore. The life cycle of the species in this genus consist of free-living zoospores, an intracellular stage called trophont, and asexual division to form resting sporangium inside host cell. This taxon has gained more interest in research due to its potential significance in terms of negative regulation for dinoflagellates blooms, that have proved harmful for algal species, humans, and the shellfish industry.

<span class="mw-page-title-main">Vampyrellida</span> Order of single-celled organisms

The vampyrellids, colloquially known as vampire amoebae, are a group of free-living predatory amoebae classified as part of the lineage Endomyxa. They are distinguished from other groups of amoebae by their irregular cell shape with propensity to fuse and split like plasmodial organisms, and their life cycle with a digestive cyst stage that digests the gathered food. They appear worldwide in marine, brackish, freshwater and soil habitats. They are important predators of an enormous variety of microscopic organisms, from algae to fungi and animals. They are also known as aconchulinid amoebae.

<i>Vampirovibrio chlorellavorus</i> Gram-negative bacteria, algae predator

Vampirovibrio chlorellavorus is a 0.6 µm pleomorphic cocci with a gram negative cell wall, and is one of the few known predatory bacteria. Unlike many bacteria, V. chlorellavorus is an obligate parasite, attaching to the cell wall of green algae of the genus Chlorella. The name Vampirovibrio originates from the Serbian vampir. meaning vampire and vibrio referring to the bacterial genus of curved rod bacterium. Chlorellavorus is named for the algal host of the bacterium (Chlorella) and the Latin voro meaning "to devour" (Chlorella-devouring).

<i>Vampyrella</i> Genus of single-celled organisms

Vampyrella is a genus of amoebae belonging to the vampyrellid cercozoans usually ranging from 30-60 µm. Members of the genus alternate between two life stages: a free-living trophozoite stage and a cyst stage in which mitosis occurs. This taxon has received a great deal of attention due to their peculiar feeding behaviour of perforating the cell wall of algal cells and drawing out the contents for nourishment.

<i>Maullinia</i> Genus of intracellular parasites

Maullinia is a genus of intracellular, phytomyxid parasites found across the Southern Hemisphere though primarily in Chile, The Prince Edward Islands, South Africa, Australia, and New Zealand. These parasites infiltrate the cells of their brown algal hosts via cytoplasmic extensions called plasmodia that divide synchronously, becoming increasingly multi-nucleate and engulfing the host cell organelles as they grow. Eventually, as the plasmodia fill the entire cell volume, the host cells become hypertrophied and grow to 3- 4x their original size, showing up as swollen appendages or galls on the host tissue at a macroscopic level. These swollen regions will burst alongside the mature Maullinia plasmodia, releasing biflagellated zoospores to the inter- and extracellular space to disperse the infection further. Zoospores can come from sporangial plasmodia, as in M. ectocarpii, or from resting spores, as in M. braseltonii.

<i>Aphelidium tribonemae</i> Species of eukaryote

Aphelidium tribonemae is a species within the Aphelid group. Their classification in the kingdom Fungi is a subject of controversy. Some argue for the classification of aphelids as ‘fungal animals', and for a period of time in the 1950s, aphids were classified as protists due to their amoeboid stage. Recently, molecular phylogenetics placed the aphelids within Opisthosporidia, a super phylum within Opisthokonta. Aphelids have posterior uniflagellate zoospores which place them as Opisthokonts. They are an early diverging lineage in Kingdom Fungi. While the aphelid group only contains three genera, it spans many both freshwater and marine ecosystems.

References

  1. "Aphelidium". www.mycobank.org. Retrieved 2020-05-17.
  2. "Aphelidium". www.speciesfungorum.org. Retrieved 2020-05-17.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Karpov, S. A., Mamkaeva, M. A., Aleoshin, V. V., Nassonova, E., Lilje, O., Gleason, F. H.. 2014: Morphology, phylogeny, and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia. Front. Microbiol.. doi : 10.3389/fmicb.2014.00112
  4. 1 2 Ding, Y., Peng, X., Wang, Z., Wen, X., Geng, Y., Li, Y.. Isolation and Characterization of an Endoparasite from the Culture of Oleaginous Microalga Graesiella sp. WBG-1. Algal Research. 29: 371-379
  5. Gleason, F. H., Carney, L. T., Lilje, O., and Glockling, S. L.. Ecological potentials of species of Rozella (Cryptomycota). Fungal Ecol. 5: 651–656. doi : 10.1016/j.funeco.2012.05.003
  6. Gromov, B. V., and Mamkaeva, K. A. (1975). Zoospore ultrastructure of Aphelidium chlorococcarum Fott. Mikol. Fitopatol. 9, 190–193.
  7. Schnepf, E., Hegewald, E., Soeder, J.. 1971: Elektronenmikroskopische Beobachtungen an Parasiten aus Scenedesmus-Massenkulturen. Archiv für Mikrobiologie. 75(3): 209-299