Aspartate 4-decarboxylase

Last updated
aspartate 4-decarboxylase
3fdd.jpg
Aspartate beta-decarboxylase dodekamer, Comamonas testosteroni
Identifiers
EC no. 4.1.1.12
CAS no. 9024-57-1
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, an aspartate 4-decarboxylase (EC 4.1.1.12) is an enzyme that catalyzes the chemical reaction

L-aspartate L-alanine + CO2

Hence, this enzyme has one substrate, L-aspartate, and two products, L-alanine and CO2. This reaction is the basis of the industrial synthesis of L-alanine. [1]

This enzyme belongs to the family of lyases, specifically the carboxy-lyases, which cleave carbon-carbon bonds. The systematic name of this enzyme class is L-aspartate 4-carboxy-lyase (L-alanine-forming). Other names in common use include desulfinase, aminomalonic decarboxylase, aspartate beta-decarboxylase, aspartate omega-decarboxylase, aspartic omega-decarboxylase, aspartic beta-decarboxylase, L-aspartate beta-decarboxylase, cysteine sulfinic desulfinase, L-cysteine sulfinate acid desulfinase, and L-aspartate 4-carboxy-lyase. This enzyme participates in alanine and aspartate metabolism and cysteine metabolism. It employs one cofactor, pyridoxal phosphate.

Related Research Articles

<span class="mw-page-title-main">Amino acid synthesis</span> The set of biochemical processes by which amino acids are produced

Amino acid synthesis is the set of biochemical processes by which the amino acids are produced. The substrates for these processes are various compounds in the organism's diet or growth media. Not all organisms are able to synthesize all amino acids. For example, humans can synthesize 11 of the 20 standard amino acids. These 11 are called the non-essential amino acids).

<span class="mw-page-title-main">Cystathionine gamma-lyase</span> Protein-coding gene in the species Homo sapiens

The enzyme cystathionine γ-lyase (EC 4.4.1.1, CTH or CSE; also cystathionase; systematic name L-cystathionine cysteine-lyase (deaminating; 2-oxobutanoate-forming)) breaks down cystathionine into cysteine, 2-oxobutanoate (α-ketobutyrate), and ammonia:

<span class="mw-page-title-main">Aspartate-semialdehyde dehydrogenase</span> Amino-acid-synthesizing enzyme in fungi, plants and prokaryota

In enzymology, an aspartate-semialdehyde dehydrogenase is an enzyme that is very important in the biosynthesis of amino acids in prokaryotes, fungi, and some higher plants. It forms an early branch point in the metabolic pathway forming lysine, methionine, leucine and isoleucine from aspartate. This pathway also produces diaminopimelate which plays an essential role in bacterial cell wall formation. There is particular interest in ASADH as disabling this enzyme proves fatal to the organism giving rise to the possibility of a new class of antibiotics, fungicides, and herbicides aimed at inhibiting it.

The enzyme L-3-cyanoalanine synthase catalyzes the chemical reaction

The enzyme acetolactate decarboxylase (EC 4.1.1.5) catalyzes the chemical reaction

The enzyme aconitate decarboxylase (EC 4.1.1.6) catalyzes the chemical reaction

<span class="mw-page-title-main">Aminocarboxymuconate-semialdehyde decarboxylase</span>

The enzyme aminocarboxymuconate-semialdehyde decarboxylase (EC 4.1.1.45) catalyzes the chemical reaction

<span class="mw-page-title-main">Aspartate 1-decarboxylase</span>

The enzyme aspartate 1-decarboxylase (EC 4.1.1.11) catalyzes the chemical reaction

The enzyme carnitine decarboxylase (EC 4.1.1.42) catalyzes the chemical reaction

<span class="mw-page-title-main">Diphosphomevalonate decarboxylase</span> InterPro Family

Diphosphomevalonate decarboxylase (EC 4.1.1.33), most commonly referred to in scientific literature as mevalonate diphosphate decarboxylase, is an enzyme that catalyzes the chemical reaction

The enzyme hydroxyglutamate decarboxylase (EC 4.1.1.16) catalyzes the chemical reaction

The enzyme methionine decarboxylase (EC 4.1.1.57) catalyzes the chemical reaction

<span class="mw-page-title-main">Methylmalonyl-CoA decarboxylase</span>

In enzymology, a methylmalonyl-CoA decarboxylase (EC 7.2.4.3) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Oxalate decarboxylase</span>

In enzymology, an oxalate decarboxylase (EC 4.1.1.2) is an oxalate degrading enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Phenylalanine decarboxylase</span>

The enzyme phenylalanine decarboxylase (EC 4.1.1.53) catalyzes the chemical reaction

The enzyme phosphatidylserine decarboxylase (EC 4.1.1.65) catalyzes the chemical reaction

The enzyme phosphonopyruvate decarboxylase (EC 4.1.1.82) catalyzes the chemical reaction

The enzyme phosphopantothenoylcysteine decarboxylase (EC 4.1.1.36) catalyzes the chemical reaction

<span class="mw-page-title-main">Sulfinoalanine decarboxylase</span>

The enzyme sulfinoalanine decarboxylase (EC 4.1.1.29) catalyzes the chemical reaction

<span class="mw-page-title-main">Tryptophanase</span> Enzyme that converts tryptophan into indole

The enzyme tryptophanase (EC 4.1.99.1) catalyzes the chemical reaction

References

  1. Karlheinz Drauz, Ian Grayson, Axel Kleemann, Hans-Peter Krimmer, Wolfgang Leuchtenberger, Christoph Weckbecker (2006). Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a02_057.pub2.{{cite encyclopedia}}: CS1 maint: multiple names: authors list (link)