Autologous matrix-induced chondrogenesis

Last updated

Autologous matrix-induced chondrogenesis (AMIC) is a treatment for articular cartilage damage. It combines microfracture surgery with the application of a bi-layer collagen I/III membrane. There is tentative short to medium term benefits as of 2017. [1]

Contents

The initialism AMIC, often used as a genericized trademark, is a registered trademark of Ed. Geistlich Söhne AG, protected by German Registration No. 30255356 [2] and international Registration No. 840373. [3]

The procedure described below relates specifically to the use of a collagen membrane, but recent advances now allow the use, using the same surgical procedure of non woven bio degradable materials that were initially developed for cell culturing of chondrocytes to be employed. These purely synthetic materials ( contain no animal derived products) are often further enhanced by impregnation of the material with high concentrations of Hyaluronic acid, which has been shown to be required to stimulate the differentiation of stem cells migrating from the bone marrow into chondrocytes (the true cartilage cell) and the resultant synthesis of type 2 collagen, the same native collagen found in the undamaged cartilage tissue. These enhanced synthetic biodegradable materials have been used to treat lesions in the knee, ankle, hip and great toe. [ citation needed ]

Procedure

Autologous Matrix Induced Chondrogenesis (AMIC) surgery is a single step procedure. After arthroscopic evaluation of the cartilage damage and decision for an AMIC procedure a mini arthrotomy is performed. An all-arthroscopic AMIC procedure for repair of cartilage defects of the knee is also possible. [4]

First the cartilage defect is exposed and cleaned whereby all unstable degenerated cartilage, including the calcified cartilage layer, are carefully removed. An imprint of the defect is then taken using a sterile moldable material (e.g. aluminium foil) and transferred to the collagen membrane which is cut to shape. The surgeon then creates tiny holes/fractures in the subchondral bone plate (microfracturing) with a special awl. Blood and bone marrow (containing stem cells) are released forming a blood clot which contains cartilage forming elements. The correctly sized collagen membrane is added to the microfractured area either by fibrin glue (autologous or commercially available) or suturing. Through flexion of the joint, the stable positioning of the membrane is verified and the wound is closed.

An essential requirement for satisfying outcome of the AMIC surgery is the compliance to a strict physical therapy program. Guidelines and recommendations exist, though they have to be adapted to the individual patients needs.

History

The AMIC procedure was first proposed by Behrens in 2003. it aims to extend the use of microfracture surgery to larger cartilage lesions > 2.5 cm2. [5] Its clinical efficiency in autologous chondrocyte implantation (ACI), another cartilage repair technique for larger cartilage lesions, has been studied. [6] [7] [8]

In general various factors have been identified known to influence the result after cartilage repair regardless of the technique used. Amongst them are the species and age of the individual, the size and localization of the articular cartilage defect, the surgical technique, and the postoperative rehabilitation protocol. [9] [10] The latter has been found especially important for microfracture surgery and therefore for AMIC. [11]

The basic procedure of Microfracture surgery was developed by JR Steadman in the late 80’s and early 90’s. It is a well documented cartilage repair technique and first line treatment option for small cartilage lesions. [12] [13] [14] AMIC evolved with the aim to improve some of the shortfalls of microfracture surgery as for instance variable repair cartilage volume and functional deterioration over time. [15]

Related Research Articles

<span class="mw-page-title-main">Cartilage</span> Resilient and smooth elastic tissue in animals

Cartilage is a resilient and smooth type of connective tissue. It is a semi-transparent and non-porous type of tissue. It is usually covered by a tough and fibrous membrane called perichondrium. In tetrapods, it covers and protects the ends of long bones at the joints as articular cartilage, and is a structural component of many body parts including the rib cage, the neck and the bronchial tubes, and the intervertebral discs. In other taxa, such as chondrichthyans, but also in cyclostomes, it may constitute a much greater proportion of the skeleton. It is not as hard and rigid as bone, but it is much stiffer and much less flexible than muscle. The matrix of cartilage is made up of glycosaminoglycans, proteoglycans, collagen fibers and, sometimes, elastin. It usually grows quicker than bone.

<span class="mw-page-title-main">Arthroscopy</span> Medical procedure

Arthroscopy is a minimally invasive surgical procedure on a joint in which an examination and sometimes treatment of damage is performed using an arthroscope, an endoscope that is inserted into the joint through a small incision. Arthroscopic procedures can be performed during ACL reconstruction.

<span class="mw-page-title-main">Hyaline cartilage</span> Type of cartilage in animals

Hyaline cartilage is the glass-like (hyaline) and translucent cartilage found on many joint surfaces. It is also most commonly found in the ribs, nose, larynx, and trachea. Hyaline cartilage is pearl-gray in color, with a firm consistency and has a considerable amount of collagen. It contains no nerves or blood vessels, and its structure is relatively simple.

Chondropathy refers to a disease of the cartilage. It is frequently divided into 5 grades, with 0-2 defined as normal and 3-4 defined as diseased.

<span class="mw-page-title-main">Osteochondritis dissecans</span> Ischemic bone disease

Osteochondritis dissecans is a joint disorder primarily of the subchondral bone in which cracks form in the articular cartilage and the underlying subchondral bone. OCD usually causes pain during and after sports. In later stages of the disorder there will be swelling of the affected joint which catches and locks during movement. Physical examination in the early stages does only show pain as symptom, in later stages there could be an effusion, tenderness, and a crackling sound with joint movement.

A meniscus transplant or meniscal transplant is a transplant of the meniscus of the knee, which separates the thigh bone (femur) from the lower leg bone (tibia). The worn or damaged meniscus is removed and is replaced with a new one from a donor. The meniscus to be transplanted is taken from a cadaver, and, as such, is known as an allograft. Meniscal transplantation is technically difficult, as it must be sized accurately for each person, positioned properly and secured to the tibial plateau. As of 2012, only a few surgeons have significant volume of experience in meniscus transplantation worldwide.

<span class="mw-page-title-main">Chondrogenesis</span> Process by which cartilage is developed

Chondrogenesis is the process by which cartilage is developed.

Articular cartilage, most notably that which is found in the knee joint, is generally characterized by very low friction, high wear resistance, and poor regenerative qualities. It is responsible for much of the compressive resistance and load bearing qualities of the knee joint and, without it, walking is painful to impossible. Osteoarthritis is a common condition of cartilage failure that can lead to limited range of motion, bone damage and invariably, pain. Due to a combination of acute stress and chronic fatigue, osteoarthritis directly manifests itself in a wearing away of the articular surface and, in extreme cases, bone can be exposed in the joint. Some additional examples of cartilage failure mechanisms include cellular matrix linkage rupture, chondrocyte protein synthesis inhibition, and chondrocyte apoptosis. There are several different repair options available for cartilage damage or failure.

<span class="mw-page-title-main">Microfracture surgery</span> Cartilage repair technique

Microfracture surgery is an articular cartilage repair surgical technique that works by creating tiny fractures in the underlying bone. This causes new cartilage to develop from a so-called super-clot.

<span class="mw-page-title-main">Bankart lesion</span> Medical condition

A Bankart lesion is a type of shoulder injury that occurs following a dislocated shoulder. It is an injury of the anterior (inferior) glenoid labrum of the shoulder. When this happens, a pocket at the front of the glenoid forms that allows the humeral head to dislocate into it. It is an indication for surgery and often accompanied by a Hill-Sachs lesion, damage to the posterior humeral head.

Articular cartilage repair treatment involves the repair of the surface of an articular joint's hyaline cartilage. Over the last few decades, surgeons and researchers have made progress in elaborating surgical cartilage repair interventions. Though these solutions do not perfectly restore the articular cartilage, some of the latest technologies have started to bring very promising results in repairing cartilages from traumatic injuries or chondropathies. These treatments have been shown to be especially beneficial for patients who have articular cartilage damage. They can provide some measure of pain relief, while at the same time slowing down the accumulation of damage, or considerably delaying the need for joint replacement surgery.

Articular cartilage damage in the knee may be found on its own but it will more often be found in conjunction with injuries to ligaments and menisci. People with previous surgical interventions face more chances of articular cartilage damage due to altered mechanics of the joint. Articular cartilage damage may also be found in the shoulder causing pain, discomfort and limited movement. Cartilage structures and functions can be damaged. Such damage can result from a variety of causes, such as a bad fall or traumatic sport-accident, previous knee injuries or wear and tear over time. Immobilization for long periods can also result in cartilage damage.

Autologous chondrocyte implantation is a biomedical treatment that repairs damages in articular cartilage. ACI provides pain relief while at the same time slowing down the progression or considerably delaying partial or total joint replacement surgery. The goal of ACI is to allow people suffering from articular cartilage damage to return to their old lifestyle; regaining mobility, going back to work and even practicing sports again.

Mesenchymal stem cells (MSCs) are multipotent cells found in multiple human adult tissues including bone marrow, synovial tissues, and adipose tissues. Since they are derived from the mesoderm, they have been shown to differentiate into bone, cartilage, muscle, and adipose tissue. MSCs from embryonic sources have shown promise scientifically while creating significant controversy. As a result, many researchers have focused on adult stem cells, or stem cells isolated from adult humans that can be transplanted into damaged tissue.

Kevin Robert Stone is an American physician, orthopedic surgeon, clinician, researcher, and company founder of The Stone Clinic and the Stone Research Foundation in San Francisco.

Cartilage repair techniques are the current focus of large amounts of research. Many different strategies have been proposed as solutions for cartilage defects. Surgical techniques currently being studied include:

<span class="mw-page-title-main">Alberto Gobbi</span> Italian surgeon (born 1956)

Alberto Gobbi is an Italian surgeon and researcher in orthopedics, traumatology and sports medicine known for his contributions in the fields of arthroscopic surgery, cartilage repair and regenerative medicine.

Autologous cultured chondrocytes on porcine collagen membrane (Maci) is a treatment to correct cartilage defects in the knee. It is used to treat symptomatic, full-thickness cartilage defects of the knee with or without bone involvement. Autologous cultured chondrocytes on porcine collagen membrane is an autologous cellularized scaffold product. This treatment is approved by the US Food and Drug Administration (FDA). It is only administered to adults. Healthy cartilage is removed from the person's own knees and a 'scaffold' is created on which the healthy tissue growths. This is an autologous matrix-induced chondrogenesis procedure which prevents tissue rejection complications since the transplanted cartilage comes from the same person.

Nasal chondrocytes (NC) are present in the hyaline cartilage of the nasal septum and in fact are the only cell type within the tissue. Similar to chondrocytes present in articular cartilage, NC express extracellular matrix proteins such as glycosaminoglycans and collagen.

Spheroids of human autologous matrix-associated chondrocytes, sold under the brand name Spherox, is a medication used to repair defects to the cartilage in the knee in adults who are experiencing knee pain and problems moving the knee. It is used where the affected area is no larger than 10 cm2 (1.6 sq in).

References

  1. Shaikh, N; Seah, MKT; Khan, WS (18 July 2017). "Systematic review on the use of autologous matrix-induced chondrogenesis for the repair of articular cartilage defects in patients". World Journal of Orthopedics. 8 (7): 588–601. doi: 10.5312/wjo.v8.i7.588 . PMC   5534408 . PMID   28808630.
  2. "Deutsche Patent- und Markenamt (DPMA), registration # 30255356". 2002-11-11. Retrieved 2013-01-25.
  3. "World Intellectual Property Organization (WIPO), registration # 840373". 2004-08-18. Retrieved 2013-01-25.
  4. Piontek, Tomasz; Ciemniewska-Gorzela Kinga; Szulc Andrzej; Naczk Jakub; Słomczykowski Michał (30 August 2011). "All-arthroscopic AMIC procedure for repair of cartilage defects of the knee". Knee Surgery, Sports Traumatology, Arthroscopy. 20 (5): 922–925. doi:10.1007/s00167-011-1657-z. ISSN   0942-2056. PMC   3332359 . PMID   21910000.
  5. Behrens P., P. (2005). "Matrixgekoppelte Mikrofrakturierung". Arthroskopie. 18 (3): 193–197. doi:10.1007/s00142-005-0316-0. S2CID   30000568.
  6. Gomoll AH, Probst C, Farr J, Cole BJ, Minas T (November 2009). "Use of a type I/III bilayer collagen membrane decreases reoperation rates for symptomatic hypertrophy after autologous chondrocyte implantation". Am J Sports Med. 37 (Suppl 1): 20S–23S. doi:10.1177/0363546509348477. ISSN   0363-5465. PMID   19841142. S2CID   206524323.
  7. Steinwachs M, Kreuz PC (April 2007). "Autologous chondrocyte implantation in chondral defects of the knee with a type I/III collagen membrane: A prospective study with a 3-year follow-up". Arthroscopy. 23 (4): 381–387. doi:10.1016/j.arthro.2006.12.003. ISSN   1526-3231. PMID   17418330.
  8. Gooding CR, Bartlett W, Bentley G, Skinner JA, Carrington R, Flanagan A (Jun 2006). "A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: Periosteum covered versus type I/III collagen covered". Knee. 13 (3): 203–10. doi:10.1016/j.knee.2006.02.011. ISSN   0968-0160. PMID   16644224.
  9. Alford JW, Cole BJ (Mar 2005). "Cartilage restoration, part 2: techniques, outcomes, and future directions". Am J Sports Med. 33 (3): 443–460. doi:10.1177/0363546505274578. ISSN   0363-5465. PMID   15716263. S2CID   11361026.
  10. Steinwachs MR, Guggi T, Kreuz PC (Apr 2008). "Marrow stimulation techniques". Injury. 39 (Suppl 1): S26–31. doi:10.1016/j.injury.2008.01.042. ISSN   0020-1383. PMID   18313469.
  11. Hurst JM, Steadman JR, O'Brien L, Rodkey WG, Briggs KK (Apr 2010). "Rehabilitation following microfracture for chondral injury in the knee". Clin Sports Med. 29 (2): 257–65, viii. doi:10.1016/j.csm.2009.12.009. ISSN   1556-228X. PMID   20226318.
  12. Steadman JR, Rodkey WG, Singleton SB, Briggs KK (October 1997). "Microfracture technique for full-thickness chondral defects: Technique and clinical results". Oper Tech Orthop. 7 (4): 300–304. doi:10.1016/S1048-6666(97)80033-X.
  13. Steadman JR, Rodkey WG, Rodrigo JJ (Oct 2001). "Microfracture: surgical technique and rehabilitation to treat chondral defects". Clin Orthop Relat Res. 391 (391 Suppl): S362–9. doi:10.1097/00003086-200110001-00033. ISSN   0009-921X. PMID   11603719.
  14. Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG (May–Jun 2003). "Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up". Arthroscopy. 19 (5): 477–84. doi:10.1053/jars.2003.50112. ISSN   1526-3231. PMID   12724676.
  15. Mithoefer K, McAdams T, Williams RJ, Kreuz PC, Mandelbaum BR (Oct 2009). "Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis". Am J Sports Med. 37 (10): 2053–63. doi:10.1177/0363546508328414. ISSN   1552-3365. PMID   19251676. S2CID   206523609.