Chondroblast

Last updated
Chondroblast
Diagram of cartilage cells called chondroblasts CRUK 032.svg
Diagram of chondroblasts
Details
Identifiers
Latin chondroblastus
TH H2.00.03.5.00002
FMA 66783
Anatomical terms of microanatomy

Chondroblasts, or perichondrial cells, is the name given to mesenchymal progenitor cells in situ which, from endochondral ossification, will form chondrocytes in the growing cartilage matrix. Another name for them is subchondral cortico-spongious progenitors. [1] They have euchromatic nuclei and stain by basic dyes.

Contents

These cells are extremely important in chondrogenesis due to their role in forming both the chondrocytes and cartilage matrix which will eventually form cartilage. Use of the term is technically inaccurate since mesenchymal progenitors can also technically differentiate into osteoblasts or fat. Chondroblasts are called chondrocytes when they embed themselves in the cartilage matrix, consisting of proteoglycan and collagen fibers, until they lie in the matrix lacunae. Once they embed themselves into the cartilage matrix, they grow the cartilage matrix by growing more cartilage extracellular matrix rather than by dividing further.[ citation needed ]

Structure

Within adults and developing adults, most chondroblasts are located in the perichondrium. This is a thin layer of connective tissue which protects cartilage and is where chondroblasts help to expand cartilage size whenever prompted to by hormones such as GH, TH, and glycosaminoglycans. [2] They are located on the perichondrium because the perichondrium, located on the outside of developing bone, is not as heavily ensheathed in cartilage extracellular matrix as the interior and because here capillaries are located. The type of growth maintained by chondroblasts is called appositional bone growth and increases the birth of the affected tissue. It is important to note that perichondrium, and thus chondroblasts, are not found on the articular cartilage surfaces of joints.[ citation needed ]

Matrix formation and composition

The extracellular matrix secreted by chondroblasts is composed of fibers, collagen, hyaluronic acid, proteoglycans, glycoproteins, water, and a host of macromolecules. Within finished cartilage, collagen fibers compose 10-20% of the volume, water 65-80%, and the proteoglycan-hyaluronic acid aggregates the remaining portion. Due to the proliferative nature of chondroblasts, cells compose a larger portion of the composition than what is normally found within completed cartilage. [3]

Collagen Type II fibers are responsible for giving the future cartilage matrix its tensile strength. The structure of these fibers, like the majority of collagen fibers, forms a triple helix structure. [3]

Proteoglycans resist the compression generally put upon cartilage and generate the swelling pressure responsible for stress shielding the matrix from compression loading. They attach themselves to up to 100 Chondroitin sulfate molecules and up to 50 keratan sulfate glycoaminoglycan chains. These chains together are attached to a hyaluronic acid backbone which, in conjunction with the collagen fibrils, create an interstitial intrafibrillar space in which water is held in by the negative charge of the proteoglycans. [4]

Development

As suggested in the name, mesenchymal progenitors originate from the mesoderm. These cells, when forming from the mesoderm, specifically form from embryonic stem cells via induction through BMP4 and fibroblast growth factor FGF2 while the fetus is inside the womb. It has been suggested that differentiating embryonic stem cells with these growth factors could prevent stem cells, once injected into potential patients, from forming teratomas, or stem cell caused tumors. [5]

Signaling, transcription and environmental factors responsible for chondroblast creation

Transcription factors

An important genetic component of this process is Sox9, a HMG box transcription factor, which marks progenitor cells for chondrogenic differentiation. Inactivation of the Sox9 gene will result in the loss of all Cartilage, and thus Chondroblast, formation. This factor is also expressed alongside Sox5 and Sox6. [1]

Runx2 is another important genetic component of Chondroblast formation. It has been found that expressing this gene will result in the suppression of the differentiation of chondroblasts. Expression of this gene will also prompt already formed cartilage to undergo endochondral ossification which will prompt the cartilage to form bone.[ citation needed ]

It is important to note here that these genes are not the only factors which determine whether chondroblasts will form. General inactivation or activation of these gene doesn't turn all affected cells into one type or another. Extrinsic environmental factors act upstream in determining what cell type will form out of any particular mesenchymal progenitor cell.[ citation needed ]

Wnt/β-catenin signaling

Wnt14 is controlled by Col2a1 and is put through the β-Catenin mediated Wnt pathway. Higher levels of Wnt14 prevented chondrocyte differentiation whereas lower levels appeared to allow it. If the Wnt/ β-Catenin pathway is upregulated, then endochondral ossification is encouraged which promotes ossification of the formed cartilage. This pathway is a canonical Wnt pathway because of the β-Catenin that accumulates once Wnt14 signalling is initiated. After Wnt14 is initiated, phosphorylation of the β-Catenin that would normally mark the protein for destruction is suppressed which allows it to accumulate and eventually go into the cell nucleus to bind to the LEF/TCF transcription factors which lead both to the destruction of any remaining phosphorylated β-Catenin as well as the differentiation of mesenchymal progenitor cells into osteoblasts. [6]

Testing of this pathway has indicated that the Wnt/β-Catenin increases β-Catenin levels before the activation of the Runx2 and Osx transcription factors which seems to suggest that early β-Catenin levels can be a sign of whether an early mesenchymal progenitor cell will progress to a chondrocyte or to an osteoblast. [7]

Retinoic acid

Retinoic acid, part of a family of molecules called retinoids, need to be repressed in order for Chondroblasts to form. A 2003 study using transgenic mice with a weak, constitutively active retinoic acid receptor found that retinoids maintain cells within condensations in a prechondrogenic, mesenchymal cell state which prevents cell differentiation. [8] It has also been suggested that the inhibition of receptor mediated retinoid signaling induces Sox9 expression which is considered a “master switch” for the differentiation of chondroblasts. [8]

Environmental factors

Differentiation of chondroblasts is favored in an environment with high compressive force and low partial oxygen pressure which combine to inhibit protein 3, a protein which inhibits cartilage differentiation. These preferences are important since mature cartilage tissue is avascular and thus would be ill-suited to a high oxygen environment. [1]

Function

Chondroblasts appear to migrate to cartilage whenever chondrocytes are destroyed via mechanical force. Remaining chondrocytes divide in order to form more chondroblasts. HMGB-1, a growth factor which promotes chondrocyte division while receptors for advanced glycation products (RAGE) mediated chemotaxis to clean up cell debris resulting from the damage. Chondroblasts then secrete cartilage matrix around themselves in order to reform the lost cartilage tissue.[ citation needed ]

However, regeneration is still too slow for patient care to effectively rely on this mechanism of repair. Part of this inability to regenerate quickly from injury results from the relative avascular nature of cartilage as compared to other connective tissues of the human body.[ citation needed ]

Pathology

Chondroblastomas can sometimes form, which are benign tumors that form at the sites of endochondral ossification due to over stimulation of the chondroblasts. When they form, they are usually found on the upper or lower tibia as well as the upper humerus where chondroblast activity is most apparent. Rarely, they can be found on the feet, hands, flat bones, or spine. 30–50% of these sarcomas have an accompanying osteoblastoma which is similarly benign. [9]

Chondrosarcoma is a more malignant type of tumor, but most are low grade tumors and often appear in the axial skeletal region. It constitutes 20% of skeletal system tumors in the United States. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Bone</span> Rigid organs that constitute part of the endoskeleton of vertebrates

A bone is a rigid organ that constitutes part of the skeleton in most vertebrate animals. Bones protect the various other organs of the body, produce red and white blood cells, store minerals, provide structure and support for the body, and enable mobility. Bones come in a variety of shapes and sizes and have complex internal and external structures. They are lightweight yet strong and hard and serve multiple functions.

<span class="mw-page-title-main">Cartilage</span> Resilient and smooth elastic tissue present in animals

Cartilage is a resilient and smooth type of connective tissue. It is a semi-transparent and non-porous type of tissue. It is usually covered by a tough and fibrous membrane called perichondrium. In tetrapods, it covers and protects the ends of long bones at the joints as articular cartilage, and is a structural component of many body parts including the rib cage, the neck and the bronchial tubes, and the intervertebral discs. In other taxa, such as chondrichthyans, but also in cyclostomes, it may constitute a much greater proportion of the skeleton. It is not as hard and rigid as bone, but it is much stiffer and much less flexible than muscle. The matrix of cartilage is made up of glycosaminoglycans, proteoglycans, collagen fibers and, sometimes, elastin. It usually grows quicker than bone.

<span class="mw-page-title-main">Extracellular matrix</span> Network of proteins and molecules outside cells that provides structural support for cells

In biology, the extracellular matrix (ECM), also called intercellular matrix (ICM), is a network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide structural and biochemical support to surrounding cells. Because multicellularity evolved independently in different multicellular lineages, the composition of ECM varies between multicellular structures; however, cell adhesion, cell-to-cell communication and differentiation are common functions of the ECM.

<span class="mw-page-title-main">Bone healing</span> Healing from bone injury

Bone healing, or fracture healing, is a proliferative physiological process in which the body facilitates the repair of a bone fracture.

<span class="mw-page-title-main">Osteoblast</span> Cells secreting extracellular matrix

Osteoblasts are cells with a single nucleus that synthesize bone. However, in the process of bone formation, osteoblasts function in groups of connected cells. Individual cells cannot make bone. A group of organized osteoblasts together with the bone made by a unit of cells is usually called the osteon.

<span class="mw-page-title-main">Periosteum</span> Membrane covering outer surface of bones

The periosteum is a membrane that covers the outer surface of all bones, except at the articular surfaces of long bones. Endosteum lines the inner surface of the medullary cavity of all long bones.

<span class="mw-page-title-main">Hyaline cartilage</span> Type of cartilage in animals

Hyaline cartilage is the glass-like (hyaline) and translucent cartilage found on many joint surfaces. It is also most commonly found in the ribs, nose, larynx, and trachea. Hyaline cartilage is pearl-gray in color, with a firm consistency and has a considerable amount of collagen. It contains no nerves or blood vessels, and its structure is relatively simple.

<span class="mw-page-title-main">Elastic cartilage</span>

Elastic cartilage, fibroelastic cartilage or yellow fibrocartilage is a type of cartilage present in the pinnae (auricles) of the ear giving it shape, provides shape for the lateral region of the external auditory meatus, medial part of the auditory canal Eustachian tube, corniculate and cuneiform laryneal cartilages, and the epiglottis. It contains elastic fiber networks and collagen type II fibers. The principal protein is elastin.

<span class="mw-page-title-main">Chondrocyte</span> Cell that makes up cartilage

Chondrocytes are the only cells found in healthy cartilage. They produce and maintain the cartilaginous matrix, which consists mainly of collagen and proteoglycans. Although the word chondroblast is commonly used to describe an immature chondrocyte, the term is imprecise, since the progenitor of chondrocytes can differentiate into various cell types, including osteoblasts.

<span class="mw-page-title-main">Endochondral ossification</span> Cartilaginous bone development that forms the long bones

Endochondral ossification is one of the two essential pathways by which bone tissue is produced during fetal development of the mammalian skeletal system, the other pathway being intramembranous ossification. Both endochondral and intramembranous processes initiate from a precursor mesenchymal tissue, but their transformations into bone are different. In intramembranous ossification, mesenchymal tissue is directly converted into bone. On the other hand, endochondral ossification starts with mesenchymal tissue turning into an intermediate cartilage stage, which is eventually substituted by bone.

<span class="mw-page-title-main">Intramembranous ossification</span> Mesenchymal bone development that forms the non-long bones

Intramembranous ossification is one of the two essential processes during fetal development of the gnathostome skeletal system by which rudimentary bone tissue is created. Intramembranous ossification is also an essential process during the natural healing of bone fractures and the rudimentary formation of bones of the head.

<span class="mw-page-title-main">Ossification</span> Development process in bones

Ossification in bone remodeling is the process of laying down new bone material by cells named osteoblasts. It is synonymous with bone tissue formation. There are two processes resulting in the formation of normal, healthy bone tissue: Intramembranous ossification is the direct laying down of bone into the primitive connective tissue (mesenchyme), while endochondral ossification involves cartilage as a precursor.

<span class="mw-page-title-main">Chondrogenesis</span>

Chondrogenesis is the biological process through which cartilage tissue is formed and developed. This intricate and tightly regulated cellular differentiation pathway plays a crucial role in skeletal development, as cartilage serves as a fundamental component of the embryonic skeleton. The term "chondrogenesis" is derived from the Greek words "chondros," meaning cartilage, and "genesis," meaning origin or formation.

Articular cartilage, most notably that which is found in the knee joint, is generally characterized by very low friction, high wear resistance, and poor regenerative qualities. It is responsible for much of the compressive resistance and load bearing qualities of the knee joint and, without it, walking is painful to impossible. Osteoarthritis is a common condition of cartilage failure that can lead to limited range of motion, bone damage and invariably, pain. Due to a combination of acute stress and chronic fatigue, osteoarthritis directly manifests itself in a wearing away of the articular surface and, in extreme cases, bone can be exposed in the joint. Some additional examples of cartilage failure mechanisms include cellular matrix linkage rupture, chondrocyte protein synthesis inhibition, and chondrocyte apoptosis. There are several different repair options available for cartilage damage or failure.

<span class="mw-page-title-main">Chondroblastoma</span> Medical condition

Chondroblastoma is a rare, benign, locally aggressive bone tumor that typically affects the epiphyses or apophyses of long bones. It is thought to arise from an outgrowth of immature cartilage cells (chondroblasts) from secondary ossification centers, originating from the epiphyseal plate or some remnant of it.

<span class="mw-page-title-main">Isogenous group</span>

An isogenous group is a cluster of up to eight chondrocytes found in hyaline and elastic cartilage.

<span class="mw-page-title-main">Sp7 transcription factor</span> Protein-coding gene in the species Homo sapiens

Transcription factor Sp7, also called osterix (Osx), is a protein that in humans is encoded by the SP7 gene. It is a member of the Sp family of zinc-finger transcription factors It is highly conserved among bone-forming vertebrate species It plays a major role, along with Runx2 and Dlx5 in driving the differentiation of mesenchymal precursor cells into osteoblasts and eventually osteocytes. Sp7 also plays a regulatory role by inhibiting chondrocyte differentiation maintaining the balance between differentiation of mesenchymal precursor cells into ossified bone or cartilage. Mutations of this gene have been associated with multiple dysfunctional bone phenotypes in vertebrates. During development, a mouse embryo model with Sp7 expression knocked out had no formation of bone tissue. Through the use of GWAS studies, the Sp7 locus in humans has been strongly associated with bone mass density. In addition there is significant genetic evidence for its role in diseases such as Osteogenesis imperfecta (OI).

<span class="mw-page-title-main">Osteochondroprogenitor cell</span>

Osteochondroprogenitor cells are progenitor cells that arise from mesenchymal stem cells (MSC) in the bone marrow. They have the ability to differentiate into osteoblasts or chondrocytes depending on the signalling molecules they are exposed to, giving rise to either bone or cartilage respectively. Osteochondroprogenitor cells are important for bone formation and maintenance.

Artificial cartilage is a synthetic material made of hydrogels or polymers that aims to mimic the functional properties of natural cartilage in the human body. Tissue engineering principles are used in order to create a non-degradable and biocompatible material that can replace cartilage. While creating a useful synthetic cartilage material, certain challenges need to be overcome. First, cartilage is an avascular structure in the body and therefore does not repair itself. This creates issues in regeneration of the tissue. Synthetic cartilage also needs to be stably attached to its underlying surface i.e. the bone. Lastly, in the case of creating synthetic cartilage to be used in joint spaces, high mechanical strength under compression needs to be an intrinsic property of the material.

Craniofacial regeneration refers to the biological process by which the skull and face regrow to heal an injury. This page covers birth defects and injuries related to the craniofacial region, the mechanisms behind the regeneration, the medical application of these processes, and the scientific research conducted on this specific regeneration. This regeneration is not to be confused with tooth regeneration. Craniofacial regrowth is broadly related to the mechanisms of general bone healing.

References

  1. 1 2 3 Krüger, Jan Philipp; Hondke, Sylvia; Endres, Michaela; Pruss, Axel; Siclari, Alberto; Kaps, Christian (2012). "Human platelet-rich plasma stimulates migration and chondrogenic differentiation of human subchondral progenitor cells". Journal of Orthopaedic Research. 30 (6): 845–52. doi: 10.1002/jor.22005 . PMID   22058056. S2CID   25710553.
  2. Hall, B.K. (1983). Cartilage . New York: Academic Press. ISBN   978-0-12-319501-2 . Retrieved 2014-10-22.
  3. 1 2 Pearle, Andrew D.; Warren, Russell F.; Rodeo, Scott A. (2005). "Basic Science of Articular Cartilage and Osteoarthritis". Clinics in Sports Medicine. 24 (1): 1–12. doi:10.1016/j.csm.2004.08.007. PMID   15636773.
  4. King, M.W. (2014-02-10). "Glycosaminoglycans" . Retrieved 2014-10-22.[ unreliable medical source? ]
  5. Lee, T. J.; Jang, J; Kang, S; Jin, M; Shin, H; Kim, D. W.; Kim, B. S. (2013). "Enhancement of osteogenic and chondrogenic differentiation of human embryonic stem cells by mesodermal lineage induction with BMP-4 and FGF2 treatment". Biochemical and Biophysical Research Communications. 430 (2): 793–7. doi:10.1016/j.bbrc.2012.11.067. PMID   23206696.
  6. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (April 1999). "Multilineage potential of adult human mesenchymal stem cells". Science. 284 (5411): 143–7. Bibcode:1999Sci...284..143P. doi:10.1126/science.284.5411.143. PMID   10102814.
  7. Day, Timothy F.; Guo, Xizhi; Garrett-Beal, Lisa; Yang, Yingzi (2005). "Wnt/β-Catenin Signaling in Mesenchymal Progenitors Controls Osteoblast and Chondrocyte Differentiation during Vertebrate Skeletogenesis". Developmental Cell. 8 (5): 739–50. doi: 10.1016/j.devcel.2005.03.016 . PMID   15866164.
  8. 1 2 Hoffman, L. M.; Weston, A. D.; Underhill, T. M. (2003). "Molecular mechanisms regulating chondroblast differentiation". The Journal of Bone and Joint Surgery. American Volume. 85-A Suppl 2: 124–32. doi:10.2106/00004623-200300002-00017. PMID   12721355. S2CID   44703653.[ permanent dead link ]
  9. Aufderheide, A.C.; Rodríguez-Martín, C.; Langsjoen, O. (2011). "Chondrosarcoma". The Cambridge encyclopedia of human paleopathology. Cambridge, United Kingdom: Cambridge University Press.
  10. "Epidemiology of Bone Cancer: An Overview".