Bipolar theorem

Last updated

In mathematics, the bipolar theorem is a theorem in functional analysis that characterizes the bipolar (that is, the polar of the polar) of a set. In convex analysis, the bipolar theorem refers to a necessary and sufficient conditions for a cone to be equal to its bipolar. The bipolar theorem can be seen as a special case of the Fenchel–Moreau theorem. [1] :76–77

Contents

Preliminaries

Suppose that is a topological vector space (TVS) with a continuous dual space and let for all and The convex hull of a set denoted by is the smallest convex set containing The convex balanced hull of a set is the smallest convex balanced set containing

The polar of a subset is defined to be:

while the prepolar of a subset is:

The bipolar of a subset often denoted by is the set

Statement in functional analysis

Let denote the weak topology on (that is, the weakest TVS topology on making all linear functionals in continuous).

The bipolar theorem: [2] The bipolar of a subset is equal to the -closure of the convex balanced hull of

Statement in convex analysis

The bipolar theorem: [1] :54 [3] For any nonempty cone in some linear space the bipolar set is given by:

Special case

A subset is a nonempty closed convex cone if and only if when where denotes the positive dual cone of a set [3] [4] Or more generally, if is a nonempty convex cone then the bipolar cone is given by

Relation to the Fenchel–Moreau theorem

Let

be the indicator function for a cone Then the convex conjugate,

is the support function for and Therefore, if and only if [1] :54 [4]

See also

Related Research Articles

In mathematics, any vector space has a corresponding dual vector space consisting of all linear forms on , together with the vector space structure of pointwise addition and scalar multiplication by constants.

In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.

Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.

In mathematics, specifically functional analysis, a trace-class operator is a linear operator for which a trace may be defined, such that the trace is a finite number independent of the choice of basis used to compute the trace. This trace of trace-class operators generalizes the trace of matrices studied in linear algebra. All trace-class operators are compact operators.

In mathematics, a linear form is a linear map from a vector space to its field of scalars.

In mathematical analysis, a family of functions is equicontinuous if all the functions are continuous and they have equal variation over a given neighbourhood, in a precise sense described herein. In particular, the concept applies to countable families, and thus sequences of functions.

In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.

In functional analysis and related branches of mathematics, the Banach–Alaoglu theorem states that the closed unit ball of the dual space of a normed vector space is compact in the weak* topology. A common proof identifies the unit ball with the weak-* topology as a closed subset of a product of compact sets with the product topology. As a consequence of Tychonoff's theorem, this product, and hence the unit ball within, is compact.

In linear algebra, the transpose of a linear map between two vector spaces, defined over the same field, is an induced map between the dual spaces of the two vector spaces. The transpose or algebraic adjoint of a linear map is often used to study the original linear map. This concept is generalised by adjoint functors.

In functional and convex analysis, and related disciplines of mathematics, the polar set is a special convex set associated to any subset of a vector space lying in the dual space The bipolar of a subset is the polar of but lies in .

In functional analysis and related areas of mathematics a polar topology, topology of -convergence or topology of uniform convergence on the sets of is a method to define locally convex topologies on the vector spaces of a pairing.

<span class="mw-page-title-main">Convex analysis</span>

Convex analysis is the branch of mathematics devoted to the study of properties of convex functions and convex sets, often with applications in convex minimization, a subdomain of optimization theory.

<span class="mw-page-title-main">Hyperplane separation theorem</span> On the existence of hyperplanes separating disjoint convex sets

In geometry, the hyperplane separation theorem is a theorem about disjoint convex sets in n-dimensional Euclidean space. There are several rather similar versions. In one version of the theorem, if both these sets are closed and at least one of them is compact, then there is a hyperplane in between them and even two parallel hyperplanes in between them separated by a gap. In another version, if both disjoint convex sets are open, then there is a hyperplane in between them, but not necessarily any gap. An axis which is orthogonal to a separating hyperplane is a separating axis, because the orthogonal projections of the convex bodies onto the axis are disjoint.

<span class="mw-page-title-main">Dual cone and polar cone</span> Concepts in convex analysis

Dual cone and polar cone are closely related concepts in convex analysis, a branch of mathematics.

In mathematics, the Pettis integral or Gelfand–Pettis integral, named after Israel M. Gelfand and Billy James Pettis, extends the definition of the Lebesgue integral to vector-valued functions on a measure space, by exploiting duality. The integral was introduced by Gelfand for the case when the measure space is an interval with Lebesgue measure. The integral is also called the weak integral in contrast to the Bochner integral, which is the strong integral.

In functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by Cauchy nets or Cauchy filters, which are generalizations of Cauchy sequences, while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces. But unlike metric-completeness, TVS-completeness does not depend on any metric and is defined for all TVSs, including those that are not metrizable or Hausdorff.

In mathematics, a dual system, dual pair, or duality over a field is a triple consisting of two vector spaces and over and a non-degenerate bilinear map . Duality theory, the study of dual systems, is part of functional analysis.

In functional analysis and related areas of mathematics, the strong dual space of a topological vector space (TVS) is the continuous dual space of equipped with the strong (dual) topology or the topology of uniform convergence on bounded subsets of where this topology is denoted by or The coarsest polar topology is called weak topology. The strong dual space plays such an important role in modern functional analysis, that the continuous dual space is usually assumed to have the strong dual topology unless indicated otherwise. To emphasize that the continuous dual space, has the strong dual topology, or may be written.

In functional analysis and related areas of mathematics, distinguished spaces are topological vector spaces (TVSs) having the property that weak-* bounded subsets of their biduals are contained in the weak-* closure of some bounded subset of the bidual.

In mathematical analysis, the spaces of test functions and distributions are topological vector spaces (TVSs) that are used in the definition and application of distributions. Test functions are usually infinitely differentiable complex-valued functions on a non-empty open subset that have compact support. The space of all test functions, denoted by is endowed with a certain topology, called the canonical LF-topology, that makes into a complete Hausdorff locally convex TVS. The strong dual space of is called the space of distributions on and is denoted by where the "" subscript indicates that the continuous dual space of denoted by is endowed with the strong dual topology.

References

  1. 1 2 3 Borwein, Jonathan; Lewis, Adrian (2006). Convex Analysis and Nonlinear Optimization: Theory and Examples (2 ed.). Springer. ISBN   9780387295701.
  2. Narici & Beckenstein 2011, pp. 225–273.
  3. 1 2 Boyd, Stephen P.; Vandenberghe, Lieven (2004). Convex Optimization (pdf). Cambridge University Press. pp. 51–53. ISBN   9780521833783 . Retrieved October 15, 2011.
  4. 1 2 Rockafellar, R. Tyrrell (1997) [1970]. Convex Analysis. Princeton, NJ: Princeton University Press. pp. 121–125. ISBN   9780691015866.

Bibliography