Boundary (topology)

Last updated
A set (in light blue) and its boundary (in dark blue). Runge theorem.svg
A set (in light blue) and its boundary (in dark blue).

In topology and mathematics in general, the boundary of a subset S of a topological space X is the set of points in the closure of S not belonging to the interior of S. An element of the boundary of S is called a boundary point of S. The term boundary operation refers to finding or taking the boundary of a set. Notations used for boundary of a set S include and .

Contents

Some authors (for example Willard, in General Topology) use the term frontier instead of boundary in an attempt to avoid confusion with a different definition used in algebraic topology and the theory of manifolds. Despite widespread acceptance of the meaning of the terms boundary and frontier, they have sometimes been used to refer to other sets. For example, Metric Spaces by E. T. Copson uses the term boundary to refer to Hausdorff's border, which is defined as the intersection of a set with its boundary. [1] Hausdorff also introduced the term residue, which is defined as the intersection of a set with the closure of the border of its complement. [2]

Definitions

There are several equivalent definitions for the boundary of a subset of a topological space which will be denoted by or simply if is understood:

  1. It is the closure of minus the interior of in :

    where denotes the closure of in and denotes the topological interior of in

  2. It is the intersection of the closure of with the closure of its complement:
  3. It is the set of points such that every neighborhood of contains at least one point of and at least one point not of :

A boundary point of a set is any element of that set's boundary. The boundary defined above is sometimes called the set's topological boundary to distinguish it from other similarly named notions such as the boundary of a manifold with boundary or the boundary of a manifold with corners, to name just a few examples.

A connected component of the boundary of S is called a boundary component of S.

Properties

The closure of a set equals the union of the set with its boundary:

where denotes the closure of in A set is closed if and only if it contains its boundary, and open if and only if it is disjoint from its boundary. The boundary of a set is closed; [3] this follows from the formula which expresses as the intersection of two closed subsets of

("Trichotomy") Given any subset each point of lies in exactly one of the three sets and Said differently,

and these three sets are pairwise disjoint. Consequently, if these set are not empty [note 1] then they form a partition of

A point is a boundary point of a set if and only if every neighborhood of contains at least one point in the set and at least one point not in the set. The boundary of the interior of a set as well as the boundary of the closure of a set are both contained in the boundary of the set.

Accumulation And Boundary Points Of S.PNG
Conceptual Venn diagram showing the relationships among different points of a subset of = set of limit points of set of boundary points of area shaded green = set of interior points of area shaded yellow = set of isolated points of areas shaded black = empty sets. Every point of is either an interior point or a boundary point. Also, every point of is either an accumulation point or an isolated point. Likewise, every boundary point of is either an accumulation point or an isolated point. Isolated points are always boundary points.

Examples

Characterizations and general examples

A set and its complement have the same boundary:

A set is a dense open subset of if and only if

The interior of the boundary of a closed set is empty. [proof 1] Consequently, the interior of the boundary of the closure of a set is empty. The interior of the boundary of an open set is also empty. [proof 2] Consequently, the interior of the boundary of the interior of a set is empty. In particular, if is a closed or open subset of then there does not exist any nonempty subset such that is open in This fact is important for the definition and use of nowhere dense subsets, meager subsets, and Baire spaces.

A set is the boundary of some open set if and only if it is closed and nowhere dense. The boundary of a set is empty if and only if the set is both closed and open (that is, a clopen set).

Concrete examples

Boundary of hyperbolic components of Mandelbrot set Mandelbrot Components.svg
Boundary of hyperbolic components of Mandelbrot set

Consider the real line with the usual topology (that is, the topology whose basis sets are open intervals) and the subset of rational numbers (whose topological interior in is empty). Then

These last two examples illustrate the fact that the boundary of a dense set with empty interior is its closure. They also show that it is possible for the boundary of a subset to contain a non-empty open subset of ; that is, for the interior of in to be non-empty. However, a closed subset's boundary always has an empty interior.

In the space of rational numbers with the usual topology (the subspace topology of ), the boundary of where is irrational, is empty.

The boundary of a set is a topological notion and may change if one changes the topology. For example, given the usual topology on the boundary of a closed disk is the disk's surrounding circle: If the disk is viewed as a set in with its own usual topology, that is, then the boundary of the disk is the disk itself: If the disk is viewed as its own topological space (with the subspace topology of ), then the boundary of the disk is empty.

Boundary of an open ball vs. its surrounding sphere

This example demonstrates that the topological boundary of an open ball of radius is not necessarily equal to the corresponding sphere of radius (centered at the same point); it also shows that the closure of an open ball of radius is not necessarily equal to the closed ball of radius (again centered at the same point). Denote the usual Euclidean metric on by

which induces on the usual Euclidean topology.

Let denote the union of the -axis with the unit circle

centered at the origin ; that is, which is a topological subspace of whose topology is equal to that induced by the (restriction of) the metric

In particular, the sets and are all closed subsets of and thus also closed subsets of its subspace Henceforth, unless it clearly indicated otherwise, every open ball, closed ball, and sphere should be assumed to be centered at the origin and moreover, only the metric space will be considered (and not its superspace ); this being a path-connected and locally path-connected complete metric space.

Denote the open ball of radius in by so that when then

is the open sub-interval of the -axis strictly between and The unit sphere in ("unit" meaning that its radius is ) is

while the closed unit ball in is the union of the open unit ball and the unit sphere centered at this same point:

However, the topological boundary and topological closure in of the open unit ball are:

In particular, the open unit ball's topological boundary is a proper subset of the unit sphere in And the open unit ball's topological closure is a proper subset of the closed unit ball in The point for instance, cannot belong to because there does not exist a sequence in that converges to it; the same reasoning generalizes to also explain why no point in outside of the closed sub-interval belongs to Because the topological boundary of the set is always a subset of 's closure, it follows that must also be a subset of

In any metric space the topological boundary in of an open ball of radius centered at a point is always a subset of the sphere of radius centered at that same point ; that is,

always holds.

Moreover, the unit sphere in contains which is an open subset of [proof 3] This shows, in particular, that the unit sphere in contains a non-empty open subset of

Boundary of a boundary

For any set where denotes the superset with equality holding if and only if the boundary of has no interior points, which will be the case for example if is either closed or open. Since the boundary of a set is closed, for any set The boundary operator thus satisfies a weakened kind of idempotence.

In discussing boundaries of manifolds or simplexes and their simplicial complexes, one often meets the assertion that the boundary of the boundary is always empty. Indeed, the construction of the singular homology rests critically on this fact. The explanation for the apparent incongruity is that the topological boundary (the subject of this article) is a slightly different concept from the boundary of a manifold or of a simplicial complex. For example, the boundary of an open disk viewed as a manifold is empty, as is its topological boundary viewed as a subset of itself, while its topological boundary viewed as a subset of the real plane is the circle surrounding the disk. Conversely, the boundary of a closed disk viewed as a manifold is the bounding circle, as is its topological boundary viewed as a subset of the real plane, while its topological boundary viewed as a subset of itself is empty. In particular, the topological boundary depends on the ambient space, while the boundary of a manifold is invariant.

See also

Notes

  1. The condition that these sets be non-empty is needed because sets in a partition are by definition required to be non-empty.
  1. Let be a closed subset of so that and thus also If is an open subset of such that then (because ) so that (because by definition, is the largest open subset of contained in ). But implies that Thus is simultaneously a subset of and disjoint from which is only possible if Q.E.D.
  2. Let be an open subset of so that Let so that which implies that If then pick so that Because is an open neighborhood of in and the definition of the topological closure implies that which is a contradiction. Alternatively, if is open in then is closed in so that by using the general formula and the fact that the interior of the boundary of a closed set (such as ) is empty, it follows that
  3. The -axis is closed in because it is a product of two closed subsets of Consequently, is an open subset of Because has the subspace topology induced by the intersection is an open subset of

Citations

  1. Hausdorff, Felix (1914). Grundzüge der Mengenlehre. Leipzig: Veit. p.  214. ISBN   978-0-8284-0061-9. Reprinted by Chelsea in 1949.
  2. Hausdorff, Felix (1914). Grundzüge der Mengenlehre. Leipzig: Veit. p.  281. ISBN   978-0-8284-0061-9. Reprinted by Chelsea in 1949.
  3. Mendelson, Bert (1990) [1975]. Introduction to Topology (Third ed.). Dover. p. 86. ISBN   0-486-66352-3. Corollary 4.15 For each subset is closed.

Related Research Articles

<span class="mw-page-title-main">Open set</span> Basic subset of a topological space

In mathematics, an open set is a generalization of an open interval in the real line.

In topology, the closure of a subset S of points in a topological space consists of all points in S together with all limit points of S. The closure of S may equivalently be defined as the union of S and its boundary, and also as the intersection of all closed sets containing S. Intuitively, the closure can be thought of as all the points that are either in S or "very near" S. A point which is in the closure of S is a point of closure of S. The notion of closure is in many ways dual to the notion of interior.

In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.

In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation. This should not be confused with a closed manifold.

A subset of a topological space is called a regular open set if it is equal to the interior of its closure; expressed symbolically, if or, equivalently, if where and denote, respectively, the interior, closure and boundary of

In mathematics, a subset of a topological space is called nowhere dense or rare if its closure has empty interior. In a very loose sense, it is a set whose elements are not tightly clustered anywhere. For example, the integers are nowhere dense among the reals, whereas the interval is not nowhere dense.

<span class="mw-page-title-main">Interior (topology)</span> Largest open subset of some given set

In mathematics, specifically in topology, the interior of a subset S of a topological space X is the union of all subsets of S that are open in X. A point that is in the interior of S is an interior point of S.

In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. That is, a function is open if for any open set in the image is open in Likewise, a closed map is a function that maps closed sets to closed sets. A map may be open, closed, both, or neither; in particular, an open map need not be closed and vice versa.

In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.

In mathematics, more specifically in point-set topology, the derived set of a subset of a topological space is the set of all limit points of It is usually denoted by

In topology and related areas of mathematics, the neighbourhood system, complete system of neighbourhoods, or neighbourhood filter for a point in a topological space is the collection of all neighbourhoods of

In functional analysis and related areas of mathematics an absorbing set in a vector space is a set which can be "inflated" or "scaled up" to eventually always include any given point of the vector space. Alternative terms are radial or absorbent set. Every neighborhood of the origin in every topological vector space is an absorbing subset.

In linear algebra and related areas of mathematics a balanced set, circled set or disk in a vector space is a set such that for all scalars satisfying

In mathematics, a filter on a set is a family of subsets such that:

  1. and
  2. if and , then
  3. If , and , then

In mathematics, a cardinal function is a function that returns cardinal numbers.

In topology and related areas of mathematics, a subset A of a topological space X is said to be dense in X if every point of X either belongs to A or else is arbitrarily "close" to a member of A — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it. Formally, is dense in if the smallest closed subset of containing is itself.

In topology, a branch of mathematics, a subset of a topological space is said to be locally closed if any of the following equivalent conditions are satisfied:

<span class="mw-page-title-main">Filters in topology</span> Use of filters to describe and characterize all basic topological notions and results.

Filters in topology, a subfield of mathematics, can be used to study topological spaces and define all basic topological notions such as convergence, continuity, compactness, and more. Filters, which are special families of subsets of some given set, also provide a common framework for defining various types of limits of functions such as limits from the left/right, to infinity, to a point or a set, and many others. Special types of filters called ultrafilters have many useful technical properties and they may often be used in place of arbitrary filters.

In functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by Cauchy nets or Cauchy filters, which are generalizations of Cauchy sequences, while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces. But unlike metric-completeness, TVS-completeness does not depend on any metric and is defined for all TVSs, including those that are not metrizable or Hausdorff.

<span class="mw-page-title-main">Ultrafilter on a set</span> Maximal proper filter

In the mathematical field of set theory, an ultrafilter on a set is a maximal filter on the set In other words, it is a collection of subsets of that satisfies the definition of a filter on and that is maximal with respect to inclusion, in the sense that there does not exist a strictly larger collection of subsets of that is also a filter. Equivalently, an ultrafilter on the set can also be characterized as a filter on with the property that for every subset of either or its complement belongs to the ultrafilter.

References