Brain-to-body mass ratio

Last updated
Brain-body mass ratio relationship for mammals Brain-body mass ratio for some animals diagram.svg
Brain–body mass ratio relationship for mammals

Brain-to-body mass ratio, also known as the brain-to-body weight ratio, is the ratio of brain mass to body mass, which is hypothesized to be a rough estimate of the intelligence of an animal, although fairly inaccurate in many cases. A more complex measurement, encephalization quotient, takes into account allometric effects of widely divergent body sizes across several taxa. [1] [2] The raw brain-to-body mass ratio is however simpler to come by, and is still a useful tool for comparing encephalization within species or between fairly closely related species.

Contents

Brain-body size relationship

The bony-eared assfish has the smallest known brain-to-body mass ratio of all vertebrates Acanthonus armatus.jpg
The bony-eared assfish has the smallest known brain-to-body mass ratio of all vertebrates

Brain size usually increases with body size in animals (i.e. large animals usually have larger brains than smaller animals); [4] the relationship is not, however, linear. Small mammals such as mice may have a brain/body ratio similar to humans, while elephants have a comparatively lower brain/body ratio. [4] [5]

In animals, it is thought that the larger the brain, the more brain weight will be available for more complex cognitive tasks. However, large animals need more neurons to represent their own bodies and control specific muscles;[ clarification needed ][ citation needed ] thus, relative rather than absolute brain size makes for a ranking of animals that better coincides with the observed complexity of animal behaviour. The relationship between brain-to-body mass ratio and complexity of behaviour is not perfect as other factors also influence intelligence, like the evolution of the recent cerebral cortex and different degrees of brain folding, [6] which increase the surface of the cortex, which is positively correlated in humans to intelligence. The noted exception to this, of course, is swelling of the brain which, while resulting in greater surface area, does not alter the intelligence of those suffering from it. [7]

Relation to metabolism

The relationship between brain weight and body weight of all living vertebrates follows two completely separate linear functions for cold-blooded and warm-blooded animals. [8] Cold-blooded vertebrates have much smaller brains than warm-blooded vertebrates of the same size. However, if brain metabolism is taken into account, the brain-to-body relationship of both warm and cold-blooded vertebrates becomes similar, with most using between 2 and 8 percent of their basal metabolism for the brain and spinal cord. [9]

Comparisons between groups

SpeciesBrain:body
mass ratio (E:S) [4]
small ants1:7 [10]
small birds1:12
mouse1:40
human1:40
cat1:100
dog1:125
frog1:172
lion1:550
elephant1:560
horse1:600
shark1:2496
hippopotamus1:2789

Dolphins have the highest brain-to-body weight ratio of all cetaceans. [11] Monitor lizards, tegus and anoles and some tortoise species have the largest among reptiles. Among birds, the highest brain-to-body ratios are found among parrots, crows, magpies, jays and ravens. Among amphibians, the studies are still limited. Either octopuses [12] or jumping spiders [13] have some of the highest for an invertebrate, although some ant species have 14%-15% of their mass in their brains, the highest value known for any animal. Sharks have one of the highest for fish alongside manta rays (although the electrogenic elephantfish has a ratio nearly 80 times higher - about 1/32, which is slightly higher than that for humans). [14] Treeshrews have a higher brain to body mass ratio than any other mammal, including humans. [15] Shrews [ clarification needed ] hold about 10% of their body mass in their brain.[ citation needed ]

It is a trend that the larger the animal gets, the smaller the brain-to-body mass ratio is. Large whales have very small brains compared to their weight, and small rodents like mice have a relatively large brain, giving a brain-to-body mass ratio similar to humans. [4] One explanation could be that as an animal's brain gets larger, the size of the neural cells remains the same, and more nerve cells will cause the brain to increase in size to a lesser degree than the rest of the body. This phenomenon can be described by an equation of the form E = CSr, where E and S are brain and body weights, r a constant that depends on animal family (but close to 2/3 in many vertebrates [16] ), and C is the cephalization factor. [12] It has been argued that the animal's ecological niche, rather than its evolutionary family, is the main determinant of its encephalization factor C. [16] In the essay "Bligh's Bounty", [17] Stephen Jay Gould noted that if one looks at vertebrates with very low encephalization quotient, their brains are slightly less massive than their spinal cords. Theoretically, intelligence might correlate with the absolute amount of brain an animal has after subtracting the weight of the spinal cord from the brain. This formula is useless for invertebrates because they do not have spinal cords, or in some cases, central nervous systems.

Criticism

Recent research indicates that, in non-human primates, whole brain size is a better measure of cognitive abilities than brain-to-body mass ratio. The total weight of the species is greater than the predicted sample only if the frontal lobe is adjusted for spatial relation. [18] The brain-to-body mass ratio was however found to be an excellent predictor of variation in problem solving abilities among carnivoran mammals. [19]

In humans, the brain to body weight ratio can vary greatly from person to person; it would be much higher in an underweight person than an overweight person, and higher in infants than adults. The same problem is encountered when dealing with marine mammals, which may have considerable body fat masses. Some researchers therefore prefer lean body weight to brain mass as a better predictor. [20]

See also

Related Research Articles

Brain Organ that controls the nervous system in vertebrates and most invertebrates

A brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It is located in the head, usually close to the sensory organs for senses such as vision. It is the most complex organ in a vertebrate's body. In a human, the cerebral cortex contains approximately 14–16 billion neurons, and the estimated number of neurons in the cerebellum is 55–70 billion. Each neuron is connected by synapses to several thousand other neurons. These neurons typically communicate with one another by means of long fibers called axons, which carry trains of signal pulses called action potentials to distant parts of the brain or body targeting specific recipient cells.

Central nervous system Brain and spinal cord

The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain and spinal cord. The CNS is so named because the brain integrates the received information and coordinates and influences the activity of all parts of the bodies of bilaterally symmetric and triploblastic animals—that is, all multicellular animals except sponges and diploblasts. It is a structure composed of nervous tissue positioned along the rostral to caudal axis of the body and may have an enlarged section at the rostral end which is a brain. Only arthropods, cephalopods and vertebrates have a true brain.

Treeshrew Order of mammals

The treeshrews are small mammals native to the tropical forests of South and Southeast Asia. They make up the entire order Scandentia, which split into two families: the Tupaiidae, and the Ptilocercidae.

Cetacean intelligence is the cognitive ability of the infraorder Cetacea of mammals. This order includes whales, porpoises, and dolphins.

Cerebrum Large part of the brain containing the cerebral cortex

The cerebrum, telencephalon or endbrain, is the largest part of the brain containing the cerebral cortex, as well as several subcortical structures, including the hippocampus, basal ganglia, and olfactory bulb. In the human brain, the cerebrum is the uppermost region of the central nervous system. The cerebrum develops prenatally from the forebrain (prosencephalon). In mammals, the dorsal telencephalon, or pallium, develops into the cerebral cortex, and the ventral telencephalon, or subpallium, becomes the basal ganglia. The cerebrum is also divided into approximately symmetric left and right cerebral hemispheres.

Neocortex Mammalian structure involved in higher-order brain functions

The neocortex, also called the neopallium, isocortex, or the six-layered cortex, is a set of layers of the mammalian cerebral cortex involved in higher-order brain functions such as sensory perception, cognition, generation of motor commands, spatial reasoning and language. The neocortex is further subdivided into the true isocortex and the proisocortex.

Encephalization quotient (EQ), encephalization level (EL), or just encephalization is a relative brain size measure that is defined as the ratio between observed to predicted brain mass for an animal of a given size, based on nonlinear regression on a range of reference species. It has been used as a proxy for intelligence and thus as a possible way of comparing the intelligences of different species. For this purpose it is a more refined measurement than the raw brain-to-body mass ratio, as it takes into account allometric effects. Expressed as a formula, the relationship has been developed for mammals and may not yield relevant results when applied outside this group.

Evolutionary neuroscience Study of the evolution of nervous systems

Evolutionary neuroscience is the scientific study of the evolution of nervous systems. Evolutionary neuroscientists investigate the evolution and natural history of nervous system structure, functions and emergent properties. The field draws on concepts and findings from both neuroscience and evolutionary biology. Historically, most empirical work has been in the area of comparative neuroanatomy, and modern studies often make use of phylogenetic comparative methods. Selective breeding and experimental evolution approaches are also being used more frequently.

Poikilotherm Organism with considerable internal temperature variation

A poikilotherm is an animal whose internal temperature varies considerably. Poikilotherms have to survive and adapt to environmental stress. One of the most important stressors is temperature change, which can lead to alterations in membrane lipid order and can cause protein unfolding and denaturation at elevated temperatures. It is the opposite of a homeotherm, an animal which maintains thermal homeostasis. While the term in principle can apply to all organisms, it is generally only applied to animals, and mostly to vertebrates. Usually the fluctuations are consequence of variation in the ambient environmental temperature. Many terrestrial ectotherms are poikilothermic. However some ectotherms remain in temperature-constant environments to the point that they are actually able to maintain a constant internal temperature .It is this distinction that often makes the term "poikilotherm" more useful than the vernacular "cold-blooded", which is sometimes used to refer to ectotherms more generally.

The size of the brain is a frequent topic of study within the fields of anatomy, biological anthropology, animal science and evolution. Brain size is sometimes measured by weight and sometimes by volume. Neuroimaging intelligence testing can be used to study the volumetric measurements of the brain. Regarding "intelligence testing", a question that has been frequently investigated is the relation of brain size to intelligence. This question is quite controversial and will be addressed further in the section on intelligence. The measure of brain size and cranial capacity is not just important to humans, but to all mammals.

Northern treeshrew Species of mammal

The northern treeshrew is a treeshrew species native to Southeast Asia.

Largest body part

The largest body part is either the largest given body part across all living and extinct organisms or the largest example of a body part within an existing species. The largest animals on the planet are not the only ones to have large body parts, with some smaller animals actually having one particularly enlarged area of the body.

Cat intelligence

Cat intelligence is the capacity of the domesticated cat to solve problems and adapt to its environment. Researchers have shown feline intelligence to include the ability to acquire new behavior that applies knowledge to new situations, communicating needs and desires within a social group and responding to training cues.

The principles that govern the evolution of brain structure are not well understood. Brain to body size scales allometrically. Small bodied mammals have relatively large brains compared to their bodies whereas large mammals have smaller brain to body ratios. If brain weight is plotted against body weight for primates, the regression line of the sample points can indicate the brain power of a primate species. Lemurs for example fall below this line which means that for a primate of equivalent size, we would expect a larger brain size. Humans lie well above the line indicating that humans are more encephalized than lemurs. In fact, humans are more encephalized than all other primates.

Mormyrinae Subfamily of fishes

The subfamily Mormyrinae contains all but one of the genera of the African freshwater fish family Mormyridae in the order Osteoglossiformes. They are often called elephantfish due to a long protrusion below their mouths used to detect buried invertebrates that is suggestive of a tusk or trunk. They can also be called tapirfish.

Paleoneurobiology

Paleoneurobiology is the study of brain evolution by analysis of brain endocasts to determine endocranial traits and volumes. Considered a subdivision of neuroscience, paleoneurobiology combines techniques from other fields of study including paleontology and archaeology. It reveals specific insight concerning human evolution. The cranium is unique in that it grows in response to the growth of brain tissue rather than genetic guidance, as is the case with bones that support movement. Fossil skulls and their endocasts can be compared to each other, to the skulls and fossils of recently deceased individuals, and even compared to those of other species to make inferences about functional anatomy, physiology and phylogeny. Paleoneurobiology is in large part influenced by developments in neuroscience as a whole; without substantial knowledge about current functionality, it would be impossible to make inferences about the functionality of ancient brains.

Bite force quotient (BFQ) is the regression of the quotient of an animal's bite force in newtons divided by its body mass in kilograms. The BFQ was first applied by Wroe et al. (2005) in a paper comparing bite forces, body masses and prey size in a range of living and extinct mammalian carnivores, later expanded on by Christiansen & Wroe (2007). Results showed that predators that take relatively large prey have large bite forces for their size, i.e., once adjusted for allometry. The authors predicted bite forces using beam theory, based on the directly proportional relationship between muscle cross-sectional area and the maximal force muscles can generate. Because body mass is proportional to volume the relationship between bite force and body mass is allometric. All else being equal, it would be expected to follow a 2/3 power rule. Consequently, small species would be expected to bite harder for their size than large species if a simple ratio of bite force to body mass is used, resulting in bias. Applying the BFQ normalizes the data allowing for fair comparison between species of different sizes in much the same way as an encephalization quotient normalizes data for brain size to body mass comparisons. It is a means for comparison, not an indicator of absolute bite force. In short, if an animal or species has a high BFQ this indicates that it bites hard for its size after controlling for allometry.

Pain in cephalopods

Pain in cephalopods is a contentious issue. Pain is a complex mental state, with a distinct perceptual quality but also associated with suffering, which is an emotional state. Because of this complexity, the presence of pain in non-human animals, or another human for that matter, cannot be determined unambiguously using observational methods, but the conclusion that animals experience pain is often inferred on the basis of likely presence of phenomenal consciousness which is deduced from comparative brain physiology as well as physical and behavioural reactions.

The expensive tissue hypothesis (ETH) relates brain and gut size in evolution. It suggests that in order for an organism to evolve a large brain without a significant increase in basal metabolic rate, the organism must use less energy on other expensive tissues; the paper introducing the ETH suggests that in humans, this was achieved by eating an easy-to-digest diet and evolving a smaller, less energy intensive gut. The ETH has inspired many research projects to test its validity in primates and other organisms.

References

  1. "Development of Intelligence". Ircamera.as.arizona.edu. Retrieved 2011-05-12.
  2. Cairό, O (2011). "External measures of cognition". Front Hum Neurosci. 5: 108. doi: 10.3389/fnhum.2011.00108 . PMC   3207484 . PMID   22065955.
  3. Fine, M. L.; Horn, M. H.; Cox, B. (1987-03-23). "Acanthonus armatus, a Deep-Sea Teleost Fish with a Minute Brain and Large Ears". Proceedings of the Royal Society of London B: Biological Sciences. 230 (1259): 257–265. Bibcode:1987RSPSB.230..257F. doi:10.1098/rspb.1987.0018. ISSN   0962-8452. PMID   2884671.
  4. 1 2 3 4 "Brain and Body Size... and Intelligence". SerendipStudio.org. 2003-03-07. Retrieved 2019-02-24.
  5. Hart, B. L.; Hart, L. A.; McCoy, M.; Sarath, C. R. (November 2001). "Cognitive behaviour in Asian elephants: use and modification of branches for fly switching". Animal Behaviour. 62 (5): 839–847. doi:10.1006/anbe.2001.1815. S2CID   53184282.
  6. "Cortical Folding and Intelligence" . Retrieved 2008-09-15.
  7. Haier, R.J.; Jung, R.E.; Yeo, R.C.; Head, K.; Alkired, M.T. (2004). "Structural brain variation and general intelligence". NeuroImage. 23 (1): 425–433. doi:10.1016/j.neuroimage.2004.04.025. PMID   15325390. S2CID   29426973.
  8. A graph of the relation between brain weight and body weight of living vertebrates Retrieved 10 February 2018.
  9. A graph of the relation of CNS to body metabolism in vertebrates Retrieved 10 February 2018.
  10. Seid, M. A.; Castillo, A.; Wcislo, W. T. (2011). "The Allometry of Brain Miniaturization in Ants". Brain, Behavior and Evolution. 77 (1): 5–13. doi:10.1159/000322530. PMID   21252471. S2CID   6177033.
  11. Marino, L.; Sol, D.; Toren, K. & Lefebvre, L. (2006). "Does diving limit brain size in cetaceans?" (PDF). Marine Mammal Science. 22 (2): 413–425. doi:10.1111/j.1748-7692.2006.00042.x.
  12. 1 2 Gould (1977) Ever since Darwin, c7s1
  13. "Jumping Spider Vision" . Retrieved 2009-10-28.
  14. Nilsson, Göran E. (1996). "Brain And Body Oxygen Requirements Of Gnathonemus Petersii, A Fish With An Exceptionally Large Brain" (PDF). The Journal of Experimental Biology. 199 (3): 603–607. doi:10.1242/jeb.199.3.603. PMID   9318319.
  15. http://genome.wustl.edu/genomes/view/tupaia_belangeri is an article on Tupaia belangeri from The Genome Institute published by Washington University, archived at https://web.archive.org/web/20100601201841/https://www.genome.wustl.edu/genomes/view/tupaia_belangeri
  16. 1 2 Pagel M. D., Harvey P. H. (1989). "Taxonomic differences in the scaling of brain on body weight among mammals". Science. 244 (4912): 1589–93. Bibcode:1989Sci...244.1589P. doi:10.1126/science.2740904. PMID   2740904.
  17. "Bligh's Bounty". Archived from the original on 2001-07-09. Retrieved 2011-05-12.
  18. Deaner, Robert O.; Isler, Karin; Burkart, Judith; Van Schaik, Carel (2007). "Overall Brain Size, and Not Encephalization Quotient, Best Predicts Cognitive Ability across Non-Human Primates". Brain Behav Evol. 70 (2): 115–124. CiteSeerX   10.1.1.570.7146 . doi:10.1159/000102973. PMID   17510549. S2CID   17107712.
  19. Benson-Amram, S.; Dantzer, B.; Stricker, G.; Swanson, E.M.; Holekamp, K.E. (25 January 2016). "Brain size predicts problem-solving ability in mammalian carnivores" (PDF). Proceedings of the National Academy of Sciences. 113 (9): 2532–2537. Bibcode:2016PNAS..113.2532B. doi: 10.1073/pnas.1505913113 . PMC   4780594 . PMID   26811470 . Retrieved 29 January 2016.
  20. Schoenemann, P. Thomas (2004). "Brain size scaling and body composition in mammals". Brain, Behavior and Evolution. 63 (1): 47–60. doi:10.1159/000073759. ISSN   0006-8977. PMID   14673198. S2CID   5885808.