Caldarchaeol

Last updated
Caldarchaeol
Caldarchaeol.png
Caldarchaeol 3D spacefill.png
Names
Preferred IUPAC name
[(2R,7R,11R,15S,19S,22S,26S,30R,34R,38R,43R,47R,51S,55S,58S,62S,66R,70R)-7,11,15,19,22,26,30,34,43,47,51,55,58,62,66,70-Hexadecamethyl-1,4,37,40-tetraoxacyclodoheptacontane-2,38-diyl]dimethanol
Other names
Dibiphytanyldiglycerol tetraether
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C86H172O6/c1-69-29-17-33-73(5)41-25-49-81(13)57-61-89-67-85(65-87)91-63-59-83(15)52-28-44-76(8)36-20-32-72(4)40-24-48-80(12)56-54-78(10)46-22-38-70(2)30-18-34-74(6)42-26-50-82(14)58-62-90-68-86(66-88)92-64-60-84(16)51-27-43-75(7)35-19-31-71(3)39-23-47-79(11)55-53-77(9)45-21-37-69/h69-88H,17-68H2,1-16H3/t69-,70-,71-,72-,73+,74+,75+,76+,77-,78-,79-,80-,81+,82+,83+,84+,85+,86+/m0/s1 Yes check.svgY
    Key: VMHUDYKDOMRJOK-QUYWEVSVSA-N Yes check.svgY
  • InChI=1/C86H172O6/c1-69-29-17-33-73(5)41-25-49-81(13)57-61-89-67-85(65-87)91-63-59-83(15)52-28-44-76(8)36-20-32-72(4)40-24-48-80(12)56-54-78(10)46-22-38-70(2)30-18-34-74(6)42-26-50-82(14)58-62-90-68-86(66-88)92-64-60-84(16)51-27-43-75(7)35-19-31-71(3)39-23-47-79(11)55-53-77(9)45-21-37-69/h69-88H,17-68H2,1-16H3/t69-,70-,71-,72-,73+,74+,75+,76+,77-,78-,79-,80-,81+,82+,83+,84+,85+,86+/m0/s1
    Key: VMHUDYKDOMRJOK-QUYWEVSVBU
  • CC1CCCC(CCCC(CCOCC(OCCC(CCCC(CCCC(CCCC(CCC(CCCC(CCCC(CCCC(CCOCC(OCCC(CCCC(CCCC(CCCC(CCC(CCC1)C)C)C)C)C)CO)C)C)C)C)C)C)C)C)CO)C)C
Properties
C86H172O6
Molar mass 1302.28 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Caldarchaeol is a membrane-spanning lipid of the glycerol dialkyl glycerol tetraether class. It is found in hyperthermophilic archaea. Membranes made up of caldarchaeol are more stable since the hydrophobic chains are linked together, allowing the microorganisms to withstand high temperatures. It is also known as dibiphytanyldiglycerol tetraether. Two glycerol units are linked together by two strains which consist of two phytanes linked together to form a linear chain of 32 carbon atoms (40 carbons including methyl sidechains).

The configuration of the macrocyclic tetraether has been determined by total synthesis of the C40-diol and comparison with a sample of obtained by degradation of natural tetraether. [1] A synthesis of tetraether has also been carried out. [2]

Notes

  1. C. H. Heathcock; B. L. Finkelstein; E. T. Jarvi; P. A. Radel; C. R. Hadley (1988). "Acyclic stereoselection. Part 42. 1,4- and 1,5-Stereoselection by sequential aldol addition to a .alpha.,.beta.-unsaturated aldehydes followed by Claisen rearrangement. Application to total synthesis of the vitamin E side chain and the archaebacterial C40 diol". J. Org. Chem. 53 (9): 1922–1942. doi:10.1021/jo00244a017.
  2. T. Eguchi; K. Ibaragi; K. Kakinuma (1998). "Total Synthesis of Archaeal 72-Membered Macrocyclic Tetraether Lipids". J. Org. Chem. 63 (8): 2689–2698. doi:10.1021/jo972328p. PMID   11672138.

Additional references

Related Research Articles

<span class="mw-page-title-main">Lipid</span> Substance of biological origin that is soluble in nonpolar solvents

Lipids are a broad group of naturally-occurring molecules which includes fats, waxes, sterols, fat-soluble vitamins, monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include storing energy, signaling, and acting as structural components of cell membranes. Lipids have applications in the cosmetic and food industries, and in nanotechnology.

<span class="mw-page-title-main">Osmium tetroxide</span> Chemical compound

Osmium tetroxide (also osmium(VIII) oxide) is the chemical compound with the formula OsO4. The compound is noteworthy for its many uses, despite its toxicity and the rarity of osmium. It also has a number of unusual properties, one being that the solid is volatile. The compound is colourless, but most samples appear yellow. This is most likely due to the presence of the impurity OsO2, which is yellow-brown in colour. In biology, its property of binding to lipids has made it a widely-used stain in electron microscopy.

<span class="mw-page-title-main">Elias James Corey</span> American chemist (born 1928)

Elias James Corey is an American organic chemist. In 1990, he won the Nobel Prize in Chemistry "for his development of the theory and methodology of organic synthesis", specifically retrosynthetic analysis. Regarded by many as one of the greatest living chemists, he has developed numerous synthetic reagents, methodologies and total syntheses and has advanced the science of organic synthesis considerably.

<span class="mw-page-title-main">Sharpless epoxidation</span> Chemical reaction

The Sharpless epoxidation reaction is an enantioselective chemical reaction to prepare 2,3-epoxyalcohols from primary and secondary allylic alcohols. The oxidizing agent is tert-butyl hydroperoxide. The method relies on a catalyst formed from titanium tetra(isopropoxide) and diethyl tartrate.

<span class="mw-page-title-main">Nonactin</span> Chemical compound

Nonactin is a member of a family of naturally occurring cyclic ionophores known as the macrotetrolide antibiotics. The other members of this homologous family are monactin, dinactin, trinactin and tetranactin which are all neutral ionophoric substances and higher homologs of nonactin. Collectively, this class is known as the nactins. Nonactin is soluble in methanol, dichloromethane, ethyl acetate and DMSO, but insoluble in water.

Phosphatidic acids are anionic phospholipids important to cell signaling and direct activation of lipid-gated ion channels. Hydrolysis of phosphatidic acid gives rise to one molecule each of glycerol and phosphoric acid and two molecules of fatty acids. They constitute about 0.25% of phospholipids in the bilayer.

<span class="mw-page-title-main">Glycerophospholipid</span> Class of lipids

Glycerophospholipids or phosphoglycerides are glycerol-based phospholipids. They are the main component of biological membranes. Two major classes are known: those for bacteria and eukaryotes and a separate family for archaea.

<span class="mw-page-title-main">Ether lipid</span>

In an organic chemistry general sense, an ether lipid implies an ether bridge between an alkyl group and an unspecified alkyl or aryl group, not necessarily glycerol. If glycerol is involved, the compound is called a glyceryl ether, which may take the form of an alkylglycerol, an alkyl acyl glycerol, or in combination with a phosphatide group, a phospholipid.

TEX<sub>86</sub>

TEX86 is an organic paleothermometer based upon the membrane lipids of mesophilic marine Nitrososphaerota (formerly Marine Group 1 Crenarchaeota).

Ring-closing metathesis (RCM) is a widely used variation of olefin metathesis in organic chemistry for the synthesis of various unsaturated rings via the intramolecular metathesis of two terminal alkenes, which forms the cycloalkene as the E- or Z- isomers and volatile ethylene.

<span class="mw-page-title-main">Solketal</span> Chemical compound

Solketal is a protected form of glycerol with an isopropylidene acetal group joining two neighboring hydroxyl groups. Solketal contains a chiral center on the center carbon of the glycerol backbone, and so can be purchased as either the racemate or as one of the two enantiomers. Solketal has been used extensively in the synthesis of mono-, di- and triglycerides by ester bond formation. The free hydroxyl group of solketal can be esterified with a carboxylic acid to form the protected monoglyceride. The isopropylene group can then be removed using an acid catalyst in aqueous or alcoholic medium. The unprotected diol can then be esterified further to form either the di- or triglyceride.

<span class="mw-page-title-main">Membrane lipid</span> Lipid molecules on cell membrane

Membrane lipids are a group of compounds which form the double-layered surface of all cells. The three major classes of membrane lipids are phospholipids, glycolipids, and cholesterol. Lipids are amphiphilic: they have one end that is soluble in water ('polar') and an ending that is soluble in fat ('nonpolar'). By forming a double layer with the polar ends pointing outwards and the nonpolar ends pointing inwards membrane lipids can form a 'lipid bilayer' which keeps the watery interior of the cell separate from the watery exterior. The arrangements of lipids and various proteins, acting as receptors and channel pores in the membrane, control the entry and exit of other molecules and ions as part of the cell's metabolism. In order to perform physiological functions, membrane proteins are facilitated to rotate and diffuse laterally in two dimensional expanse of lipid bilayer by the presence of a shell of lipids closely attached to protein surface, called annular lipid shell.

The Fleming–Tamao oxidation, or Tamao–Kumada–Fleming oxidation, converts a carbon–silicon bond to a carbon–oxygen bond with a peroxy acid or hydrogen peroxide. Fleming–Tamao oxidation refers to two slightly different conditions developed concurrently in the early 1980s by the Kohei Tamao and Ian Fleming research groups.

Archaeol is composed of two phytanyl chains linked to the sn-2 and sn-3 positions of glycerol. As its phosphate ester, it is a common component of the membranes of archaea.

The [2,3]-Wittig rearrangement is the transformation of an allylic ether into a homoallylic alcohol via a concerted, pericyclic process. Because the reaction is concerted, it exhibits a high degree of stereocontrol, and can be employed early in a synthetic route to establish stereochemistry. The Wittig rearrangement requires strongly basic conditions, however, as a carbanion intermediate is essential. [1,2]-Wittig rearrangement is a competitive process.

Fétizon oxidation is the oxidation of primary and secondary alcohols utilizing the compound silver(I) carbonate absorbed onto the surface of celite also known as Fétizon's reagent first employed by Marcel Fétizon in 1968. It is a mild reagent, suitable for both acid and base sensitive compounds. Its great reactivity with lactols makes the Fétizon oxidation a useful method to obtain lactones from a diol. The reaction is inhibited significantly by polar groups within the reaction system as well as steric hindrance of the α-hydrogen of the alcohol.

Crenarchaeol is a glycerol biphytanes glycerol tetraether (GDGT) biological membrane lipid. Together with archaeol, crenarcheol comprises a major component of archaeal membranes. Archaeal membranes are distinct from those of bacteria and eukaryotes because they contain isoprenoid GDGTs instead of diacyl lipids, which are found in the other domains. It has been proposed that GDGT membrane lipids are an adaptation to the high temperatures present in the environments that are home to extremophile archaea

<span class="mw-page-title-main">Hydroxyarchaeol</span> Chemical compound

Hydroxyarchaeol is a core lipid unique to archaea, similar to archaeol, with a hydroxide functional group at the carbon-3 position of one of its ether side chains. It is found exclusively in certain taxa of methanogenic archaea, and is a common biomarker for methanogenesis and methane-oxidation. Isotopic analysis of hydroxyarchaeol can be informative about the environment and substrates for methanogenesis.

<span class="mw-page-title-main">Glycerol dialkyl glycerol tetraether</span>

Glycerol dialkyl glycerol tetraether lipids (GDGTs) are a class of membrane lipids synthesized by archaea and some bacteria, making them useful biomarkers for these organisms in the geological record. Their presence, structure, and relative abundances in natural materials can be useful as proxies for temperature, terrestrial organic matter input, and soil pH for past periods in Earth history. Some structural forms of GDGT form the basis for the TEX86 paleothermometer. Isoprenoid GDGTs, now known to be synthesized by many archaeal classes, were first discovered in extremophilic archaea cultures. Branched GDGTs, likely synthesized by acidobacteriota, were first discovered in a natural Dutch peat sample in 2000.

Biphytane (or bisphytane) is a C40 isoprenoid produced from glycerol dialkyl glycerol tetraether (GDGT) degradation. As a common lipid membrane component, biphytane is widely used as a biomarker for archaea. In particular, given its association with sites of active anaerobic oxidation of methane, it is considered a biomarker of methanotrophic archaea. It has been found in both marine and terrestrial environments.