Chrysomya megacephala

Last updated

Chrysomya megacephala
Ch.megacephala wiki.jpg
Female C. megacephala
Chrysomya megacephala male.jpg
Male C. megacephala
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Diptera
Family: Calliphoridae
Genus: Chrysomya
Species:
C. megacephala
Binomial name
Chrysomya megacephala
(Fabricius, 1794)
Synonyms
  • Musca megacephala Fabricius, 1794
  • Cosmina basalis(Smith, 1876)
  • Pollenia basalisSmith, 1876

Chrysomya megacephala, more commonly known as the oriental latrine fly or oriental blue fly, is a member of the family Calliphoridae (blowflies). It is a warm-weather fly with a greenish-blue metallic box-like body. The fly infests corpses soon after death, making it important to forensic science. This fly is implicated in some public health issues; it can be the cause of myiasis, [1] and also infects fish and livestock.

Contents

Description

Chrysomya megacephala's eggs are "oval with one flat face and another convex". [2] Adult flies reflect a metallic blue-green color on their thorax and abdomen and have yellow gena, or cheeks. [3] Larvae vary in size according to instar and are shaped more thickly towards the rear. [4] C. megacephala have large red eyes, those of males being close together, and those of females farther apart. [5] The cercus of the male is longer than that of the female. [6]

Distribution and habitat

Chrysomya megacephala has a wide geographical distribution. It is most common in the Oriental and Australasian realms. [7] It is also found in Japan and the Palearctic realm. The range of C. megacephala has grown since the 1970s, with the species expanding into New Zealand and Africa, [8] along with South, Central, and North America. C. megacephala entered the United States through harbors and airports. [9] The fly has been found in California, [10] as well as Texas, [11] Louisiana, [12] and Hawaii. [13] C. megacephala exists in two forms, the normal and the derived.[ citation needed ] Tropical forests on the Pacific Islands, such as Samoa, are home to the normal form; the normal is considered to be the plesiomorphic form of C. megacephala.[ citation needed ] The derived form is thought to have emerged from Papua New Guinea and is said to be synanthropic, or ecologically associated with humans.[ citation needed ]

Behavior and ecology

Climatic variation

Chrysomya megacephala prefer warm climates, and display a correlation between warmer temperatures and higher fecundity. In tropical populations, such as in Brazil, fertility is also lower in areas with high densities of larvae, where many in one small area compete for the same food source. A correlation between wing size and temperature as well as tibia size and temperature has also been found in this species. There was a similar relationship between wing and tibia size and fecundity. All three of these values variables, fecundity, wing size and tibia size, stay within the same range throughout the year, showing seasonal variation to be absent. This has been of interest to researchers, since this fly is present in high numbers in warm weather and low numbers in cold weather. The majority of Dipteran species that have had a life table constructed have demonstrated a tendency for smaller bodies in the warmer months. C. megacephala has a relatively[ clarification needed ] long lifespan as an adult which has helped the species become successful at invading new geographical areas. The long adult lifespan means that the parents are present to rear the offspring, ensuring their survival. [14]

Reproduction

Flies laying eggs on a dead baby bird. Chrysomya megacephala on baby bird.jpg
Flies laying eggs on a dead baby bird.

The developmental stages of C. megacephala include egg, larva and pupa. A female fly may lay as many as 200 to 300 eggs, often in human feces, meat or fish. [15] Larval stages include first, second and third instals or growth periods. [16] The eggs take approximately one day to develop, while the larvae take 5.4 days and the pupae 5.3 days. [17] Population numbers as well as body size are greatly influenced by temperature. [18] The adult lifespan of the fly is approximately seven days. [15] The development of C. megacephala is linked to the length of time spent feeding in the larval stage, as well as to temperature; the lower the temperature, the more slowly the larvae develop. [19] In laboratory studies conducted at 27 °C., eggs hatch in 18 hours; the first molt occurs in 30 hours; the second molt in 72 hours; pupation after 144 hours; and the adult emerges after approximately 234 hours. These intervals vary depending on geographical location; other environmental factors also can determine how long flies will stay in the larval stage. Males tend to emerge two or three hours ahead of the females. [20]

The reproduction and survival rates of C. megacephala are closely related to developmental factors, including the amount of available food, and competition from larvae of other species, such as C. rufifacies. [21] In the presence of competing larvae, those of C. megacephala spend less time feeding, leading to early pupation, smaller adults, and early reproduction. The second and third instar larvae of C. rufifacies are known predator that feeds on the larvae of C. megacephala when feeding substrate is less or larval density is high. In such cases C. megacephala tend to disperse early, thus remains malnourished. [22] [23]

Predators and prey

Chrysomya albiceps is also known to prey on C. megacephala during the larval stage when they must compete for the same food source. [24] Beetles are also known to prey on C. megacephala. C. megacephala is not predaceous in the adult or larval form, preferring to feed on necrophagous material of any kind, such as fish, cows and humans.

Larval competition

Chrysomya megacephala larvae are known to compete with C. rufifacies larvae for food in a mixed-species environment. Research has shown that under specific population densities, C. rufifacies will facultatively feed on other species of maggots and on its own species. When C. rufifacies and C. megacephala larvae are put into cultures separately from one another in high densities, C. megacephala has a higher rate of survival than C. rufifacies. Both species had a lighter adult weight than normal and pupated earlier. The third instar of C. rufifacies will eat Chrysomya megacephala when the larvae are in high density. Despite this predation on Chrysomya megacephala, both species had a lower survival rate, lighter adult weight and pupated early. [25]

Forensic science

Importance in forensic science

C. megacephala is considered important to forensic science because it is one of the first flies to show up on a corpse, and so the time of death can easily be determined when Chrysomya megacephala larvae are found on a body. In many forensic entomology cases either C. rufifacies or Chrysomya megacephala are found on the decaying corpse; mitochondrial DNA is the main method used to determine which subfamily is present. [26] The species' wide geographical distribution and high fecundity also make it useful in forensic cases; C. megacephala is among the most common blowflies found.

Larval dispersion patterns of C. megacephala also make it forensically important. Knowing that, to pupate, larvae move away from the food source to find a safe place to metamorphose, forensic entomologists can accurately calculate a post mortem interval. [27] Knowledge of larval competition is also useful in forensic studies, because it could affect the estimate of the time of death. If only C. rufifacies is found on a body, it is not accurate to use only this species to calculate a time of colonization. The colonization of C. megacephala prior to C. rufifacies must be taken into account. [25]

Larval-state poisoning detection

In any part of the world that uses organophosphates, C. megacephala could prove to be beneficial. Organophosphate compounds are used in agriculture and are highly toxic. [28] Organophosphate poisoning often causes death, and in many cases, by evaluating the body tissue and fluids, the toxin can be identified as the source of the poisoning. However, it is somewhat difficult to evaluate the body tissue in a body that is exceedingly decomposed. Nevertheless, a medical examiner in Hawaii worked on a case in which poisoning by malathion, an organophosphate insecticide, [29] was thought to be the cause of death. The victim’s stomach contents and body fat were examined and found to have contained malathion. The fly larvae of Chrysomya megacephala and Chrysomya rufifacies were also present at the scene on the body and were tested for malathion. Both of these species did contain malathion, but there had been no previous record of organophosphates in their larvae. Studying larvae from decomposed remains may provide an effective method of determining the presence of these toxins in a body that is extremely decayed. [30]

Use in other research

Chrysomya megacephala has a beneficial and practical value apart from being significant in forensic investigations; this blowfly is the source of pollination for mangos in the Australian region. While most areas wish to rid themselves of C. megacephala, Taiwanese farmers have found ways to enhance the population of this blowfly so that more mangos will be pollinated. [31]

Public health and agricultural issues

Myiasis in livestock

Chrysomya megacephala causes myiasis in humans and animals. This causes losses in cattle and fish industries all over the world. Studies are being done on C. megacephala to determine its role as a vector for diarrhea-causing bacteria such as E. coli. [21]

Public health importance and management control

Chrysomya megacephala are known to be the source of accidental (secondary) myiasis in humans, where the flies do not pierce the skin but invade an open wound. [32] The first record of human myiasis caused by C. megacephala and C. rufifacies was in Thailand, where a 53-year-old man had a tumor lesion where the larvae accumulated. Most recorded myiasis cases, however, do not involve the fly. [33] C. megacephala is a carrier of pathogens, such as bacteria, protozoan cysts, and helminth eggs, to human food, because it lays its eggs on human feces, and will land on human food soon after. [34]

The flies also cause a huge economic problem in Asia, Africa, and the Pacific. In these areas sun-drying is the major method of preserving fish, as ice is typically unaffordable. However, blowfly larvae tend to infect these sun-dried fish when the weather is warm and humid. In an experiment, 95% of the infecting flies were found to be C. megacephala. [35] The flies can be controlled by using an odor that the flies are attracted to trap them. [32] Insecticides are also used, although this results in the development of resistance. [36]

See also

Related Research Articles

<span class="mw-page-title-main">Calliphoridae</span> Family of insects in the Diptera order

The Calliphoridae are a family of insects in the order Diptera, with almost 1,900 known species. The maggot larvae, often used as fishing bait, are known as gentles. The family is known to be polyphyletic, but much remains disputed regarding proper treatment of the constituent taxa, some of which are occasionally accorded family status.

<span class="mw-page-title-main">Common green bottle fly</span> Species of insect

The common green bottle fly is a blowfly found in most areas of the world and is the most well-known of the numerous green bottle fly species. Its body is 10–14 mm (0.39–0.55 in) in length – slightly larger than a house fly – and has brilliant, metallic, blue-green or golden coloration with black markings. It has short, sparse, black bristles (setae) and three cross-grooves on the thorax. The wings are clear with light brown veins, and the legs and antennae are black. The larvae of the fly may be used for maggot therapy, are commonly used in forensic entomology, and can be the cause of myiasis in livestock and pets. The common green bottle fly emerges in the spring for mating.

<i>Chrysomya putoria</i> Species of fly

Chrysomya putoria, also known as the tropical African latrine blowfly, is a fly species belonging to the blowfly family, Calliphoridae.C. putoria is native to Africa and has recently spread to the Americas. These flies pose significant health risks, especially due to their close association with human settlements. Adult flies can carry pathogens, while larvae may cause myiasis by growing and feeding on the flesh of domestic animals and humans. Other myiasis-causing flies in the same genus are C. bezziana and C. megacephala. C. putoria and other flies that feed on decomposing tissue are used as important tools in forensic entomology to establish the post-mortem interval, or the time elapsed since death.

<i>Cynomya mortuorum</i> Species of fly

Cynomya mortuorum belongs to the order Diptera, sometimes referred to as "true flies". In English, the only common name occasionally used is "fly of the dead". It has a bluish-green appearance, similar to other Calliphoridae and is found in multiple geographic locations with a preference for colder regions. Belonging to the family Calliphoridae, it has been shown to have forensically relevant implications due to its appearance on carrion. Current research is being done to determine C. mortuorum's level of importance and usage within forensic entomology.

<i>Calliphora vomitoria</i> Species of fly

Calliphora vomitoria, known as the blue bottle fly, orange-bearded blue bottle, or bottlebee is a species of blow fly, a species in the family Calliphoridae. Calliphora vomitoria is the type species of the genus Calliphora. It is common throughout many continents including Europe, Americas, and Africa. They are fairly large flies, nearly twice the size of the housefly, with a metallic blue abdomen and long orange setae on the gena.

<i>Chrysomya</i> Genus of flies

Chrysomya is an Old World blow fly genus of the family Calliphoridae. The genus Chrysomya contains a number of species including Chrysomya rufifacies and Chrysomya megacephala. The term “Old World blow fly” is a derivative of both the associated family, Calliphoridae, and the belief that the genus Chrysomya originated in Asia and migrated to North America only relatively recently. Chrysomya’s primary importance to the field of medico-criminal forensic entomology is due to the genus’ reliable life cycle, allowing investigators to accurately develop a postmortem interval. Chrysomya adults are typically metallic colored with thick setae on the meron and plumose arista. The name comes from the word chrysos, meaning “golden” in reference to the metallic sheen of the genus’ species, and -mya, a derivation from the word myia, meaning “fly”.

<i>Cochliomyia</i> Genus of insects

Cochliomyia is a genus in the family Calliphoridae, known as blowflies, in the order Diptera. Cochliomyia is commonly referred to as the New World screwworm flies, as distinct from Old World screwworm flies. Four species are in this genus: C. macellaria, C. hominivorax, C. aldrichi, and C. minima. C. hominivorax is known as the primary screwworm because its larvae produce myiasis and feed on living tissue. This feeding causes deep, pocket-like lesions in the skin, which can be very damaging to the animal host. C. macellaria is known as the secondary screwworm because its larvae produce myiasis, but feed only on necrotic tissue. Both C. hominivorax and C. macellaria thrive in warm, tropical areas.

<i>Chrysomya rufifacies</i> Species of fly

Chrysomya rufifacies is a species belonging to the blow fly family, Calliphoridae, and is most significant in the field of forensic entomology due to its use in establishing or altering post mortem intervals. The common name for the species is the hairy maggot blow fly, and it belongs to the genus Chrysomya, which is commonly referred to as the Old World screwworms. This genus includes other species such as Chrysomya putoria and Chrysomya bezziana, which are agents of myiasis. C. rufifacies prefers very warm weather and has a relatively short lifecycle. It is widely distributed geographically and prefers to colonize large carcasses over small ones. The species commonly has a greenish metallic appearance and is important medically, economically, and forensically.

<i>Calliphora vicina</i> Species of insect

Calliphora vicina is a member of the family Calliphoridae, which includes blow flies and bottle flies. These flies are important in the field of forensic entomology, being used to estimate the time of a person's death when a corpse is found and then examined. C. vicina is currently one of the most entomologically important fly species for this purpose because it arrives at and colonizes a body following death in consistent timeframes.

<i>Phormia regina</i> Species of fly

Phormia regina, the black blow fly, belongs to the blow fly family Calliphoridae and was first described by Johann Wilhelm Meigen.

In forensic entomology, entomotoxicology is the analysis of toxins in arthropods that feed on carrion. Using arthropods in a corpse or at a crime scene, investigators can determine whether toxins were present in a body at the time of death. This technique is a major advance in forensics; previously, such determinations were impossible in the case of severely decomposed bodies devoid of intoxicated tissue and bodily fluids. Ongoing research into the effects of toxins on arthropod development has also allowed better estimations of postmortem intervals.

Chrysomya villeneuvi, or hairy maggot, is a South East Asian fly species of forensic importance because the maggots of this species have been collected from human corpses.

<i>Chrysomya albiceps</i> Species of fly

Chrysomya albiceps is a species belonging to the blow fly family, Calliphoridae.

<i>Chrysomya bezziana</i> Species of fly

Chrysomya bezziana, also known as the Old World screwworm fly or screwworm, is an obligate parasite of mammals. Obligate parasitic flies require a host to complete their development. Named to honor the Italian entomologist Mario Bezzi, this fly is widely distributed in Asia, tropical Africa, India, and Papua New Guinea. The adult can be identified as metallic green or blue with a yellow face and the larvae are smooth, lacking any obvious body processes except on the last segment.

<i>Lucilia silvarum</i> Species of fly

The common toad fly, Lucilia silvarum, is a member of the fly family Calliphoridae. This fly was first discovered by Johann Wilhelm Meigen in 1826 and is found most notably in European and Western Countries.

<i>Calliphora livida</i> Species of fly

Calliphora livida is a member of the family Calliphoridae, the blow flies. This large family includes the genus Calliphora, the "blue bottle flies". This genus is important in the field of forensic entomology because of its value in post-mortem interval estimation.

<i>Lucilia coeruleiviridis</i> Species of fly

Lucilia coeruleiviridis, formerly Phaenecia coeruleiviridis, is commonly known as a green bottle fly, because of its metallic blue-green thorax and abdomen. L. coeruleiviridis was first discovered by French entomologist Pierre-Justin-Marie Macquart in 1855. It belongs to the family Calliphoridae and is one of many forensically important Diptera, as it is often found on decaying substances. L. coeruleiviridis is one of the most ubiquitous blow fly species in the southeastern United States, particularly in the spring and fall months.

<i>Protophormia terraenovae</i> Species of fly

Protophormia terraenovae is commonly called northern blowfly, blue-bottle fly or blue-assed fly. It is distinguished by its deep blue coloration and large size and is an important species throughout the Northern Hemisphere. This fly is notable for its economic effect as a myiasis pest of livestock and its antibiotic benefits in maggot therapy. Also of interest is P. terraenovae’s importance in forensic investigations: because of their temperature-dependent development and their prominent presence on corpses, the larvae of this species are useful in minimum post-mortem interval (mPMI) determination.

<i>Calliphora stygia</i> Species of fly

Calliphora stygia, commonly known as the brown blowfly, or rango tumaro in Māori, is a species of blow-fly that is found in Australia and New Zealand. The brown blowfly has a grey thorax and yellow-brown abdomen.

<i>Cochliomyia macellaria</i> Species of fly

Cochliomyia macellaria, also known as the secondary screwworm, is a species of blow fly in the family Calliphoridae. These screwworms are referred to as "secondary" because they typically infest wounds after invasion by primary myiasis-causing flies. While blow flies may be found in every terrestrial habitat, C. macellaria is primarily found in the United States, American tropics, and sometimes southern Canada. They are most common in the southeastern United States in states like Florida. C. macellaria have a metallic greenish-blue thorax and a red-orange head and eyes. These adult blowflies range from 5–8 mm in size.

References

  1. Brundage, Adrienne. "Entomology". Forensic Entomology Class Lecture. Texas A&M University, College Station. 2 Mar. 2009.
  2. José, Augusto de; David, Oliveira; Rocha, Thalita; Henrique Caetano, Flávio (2008). "Ultramorphological characteristics of Chrysomya megacephala (Diptera, Calliphoridae) eggs and its eclosion". Micron. 39 (8): 1134–1137. doi:10.1016/j.micron.2008.06.002. PMID   18644733.
  3. Jonathan A. Cammack. "A Survey of the Necrophilous Diptera on the Island of Dominica" Pg. 6 Department of Entomology at Texas A&M University, College Station, TX. http://dominica.tamu.edu/student%20projects/Dominica%20Projects%20pdf%20copy/Cammack_Jonathan.pdf Archived 2007-08-22 at the Wayback Machine
  4. Jason H. Bryd, James L. Castner. "Forensic Entomology; The Utility of Arthropods in Legal Investigations" Pg. 33
  5. Byrd, Jason H., and James L. Castner. Forensic Entomology. Florida: CRC Press, 2001.
  6. Chaiwong, Tarinee; Sukontason, Kom; Olson, Jimmy K.; Kurahashi, Hiromu; Chaithong, Udom; Sukontason, Kabkaew L. (April 2008). "Fine structure of the reproductive system of Chrysomya megacephala". Parasitology Research. 102 (5): 973–80. doi:10.1007/s00436-007-0863-6. PMID   18180955. S2CID   182870.
  7. Wall Richard, and David Shearer. Veterinary Entomology: Arthropod Ectoparasites of Veterinary Importance. London: Springer, 1997.
  8. Williams KA, Villet MH (2006). "A new and earlier record of Chrysomya megacephala in South Africa, with notes on another exotic species, Calliphora vicina (Diptera: Calliphoridae)" (PDF). African Invertebrates. 47: 347–350. Archived from the original (PDF) on 2011-07-26. Retrieved 2009-03-22.
  9. Williams KA, Villet MH (December 2006). "A new and earlier record of Chrysomya megacephala in South Africa" (PDF). African Invertebrates. 47: 349. Archived from the original (PDF) on 2011-07-26. Retrieved 2009-03-22.
  10. Gordoy WAC; et al. (September–October 1996). "Dynamics of Experimental Populations of Native and Introduced Blowflies (Diptera: Calliphoridae): Mathematical Modelling and the Transition from Asymptotic Equilibrium to Bounded Oscillations". Memórias do Instituto Oswaldo Cruz. 91 (5): 639–40. doi: 10.1590/s0074-02761996000500017 . PMID   9137751.
  11. Wells JD (May 1991). "Chrysomya megacephala (Diptera: Calliphoridae) has reached the continental United States: review of its biology, pest status, and spread around the world". J. Med. Entomol. 28 (3): 471–3. doi:10.1093/jmedent/28.3.471. PMID   1875378.
  12. Pharr, Lauren R. 2009. A Taphonomic Model of Concealment: Decomposition and the Postmortem Interval (PMI) in a 55-Gallon Barrel. M.A. thesis, Louisiana State University. http://etd.lsu.edu/docs/available/etd-07102009-110514/ Archived 2010-06-25 at the Wayback Machine
  13. Goff, M. Lee A Fly for the Prosecution: How Insect Evidence Helps Solve Crimes. Massachusetts: Harvard University Press, 2001.
  14. Tomberlin JK, Reeves WK, Sheppard DC (2001). "First record of Chrysomya megacephala (Calliphoridae: Diptera) in Georgia, USA". Florida Entomologist. 84 (2): 300–1. doi: 10.2307/3496184 . JSTOR   3496184.
  15. 1 2 Doe, Peter E. (1998-06-15). Fish Drying and Smoking: Production and Quality. CRC Press. ISBN   978-1-56676-668-5.
  16. Goff, M. Lee (2001-09-01). A Fly for the Prosecution: How Insect Evidence Helps Solve Crimes. Harvard University Press. ISBN   978-0-674-03768-7.
  17. Refaat M. Gabre; Fatma K. Adham; Hsin Chi. (2005). "Life Table of Chrysomya mecagecephala (Fabricius) (Diptera: Calliphoridae" (PDF). International Journal of Ecology, Acta Oecologica. 27 (3): 179–183 see p. 180. doi:10.1016/j.actao.2004.12.002.
  18. Regada C, Godoy WA (2006). "Larval density, temperature and biological aspects of Chrysomya megacephala(Diptera: Calliphoridae)" (PDF). Arq. Bras. Med. Vet. Zootec. 58 (4): 562–6. doi: 10.1590/S0102-09352006000400018 .
  19. Piangjai S, Siriwattanarungsee S, Sukontason KL, Sukontason K (2008). "Morphology and developmental rate of blowflies Chrysomya megacephala and Chrysomya rufifacies in Thailand: application in forensic entomology". Parasitol. Res. 102 (6): 1207–16. doi:10.1007/s00436-008-0895-6. PMID   18264799. S2CID   27916879.
  20. Kurahashi H, Wells JD (1994). "Chrysomya megacephala (Fabricius) (Diptera : Calliphoridae) development : Rate, variation and the implications for forensic entomology". Medical Entomology and Zoology. 45 (4): 303–9. doi: 10.7601/mez.45.303_1 .
  21. 1 2 Bunchoo M, Khantawa B, Piangjai S, Rongsiyam Y, Sukontason KL, Sukontason K (2007). "Comparison between Musca dometica and Chrysomya megacephala as carriers of bacteria in northern Thailand". Southeast Asia J. Trop. Med. Public Health.
  22. Baumgartner, Donald L. (1993-03-01). "Review of Chrysomya rufifacies (Diptera: Calliphoridae)". Journal of Medical Entomology. 30 (2): 338–352. doi:10.1093/jmedent/30.2.338. ISSN   1938-2928.
  23. Piangjai S, Siriwattanarungsee S, Sukontason KL, Sukontason K (2008). "Morphology and developmental rate of blowflies Chrysomya megacephala and Chrysomya rufifacies in Thailand: application in forensic entomology". Parasitol Res. 102 (6): 1207–16. doi:10.1007/s00436-008-0895-6. PMID   18264799. S2CID   27916879.
  24. Gomes, Leonardo, Marcos Rogério Sanches and Claudio José Von Zuben. 2007. Behavior of the Combined Radial Post-feeding Larval Dispersal of the Blowflies Chrysomya megacephala and Chrysomya albiceps (Diptera, Calliphoridae)
  25. 1 2 Shiao, Shiuh-Feng; Ta-Chuan Yeh (2008). "Larval Competition of Chrysomya megacephala and Chrysomya rufifacies (Diptera: Calliphoridae): Behavior and Ecological Studies of Two Blow Fly Species of Forensic Significance". J. Med. Entomol. 45 (4): 785–799. doi: 10.1093/jmedent/45.4.785 . PMID   18714884.
  26. Shiuh-Feng S, Yeh T (2008). "Larval competition of Chrysomya megacephala and Chrysomya rufifacies: behavior and ecological studies of two blow fly species of forensic significance" (PDF). J. Med. Entomol. 45 (4): 785–799. doi:10.1603/0022-2585(2008)45[785:LCOCMA]2.0.CO;2. PMID   18714884. S2CID   36527046.
  27. Byrd, James H. and James L. Castner. Forensic Entomology: The Utility of Arthropods in Legal Investigations. CRC Press, New York. 2001.
  28. Wallman JF (1997). "First Record of the Oriental Latrine Fly, Chrysomya Megacephala, from South Australia" (PDF). Transactions of the Royal Society of South Australia. 121 (4): 163–4.[ permanent dead link ]
  29. "Organophosphate Toxicity." Department of Natural Resources. 2008. http://www.michigan.gov/dnr/0,1607,7-153-10370_12150_12220-27249--,00.html
  30. Gunatilake, and Lee Goff (1989). "Detection of Organophosphate Poisoning in a Putrefying Body by Analyzing Arthropod Larvae". Journal of Forensic Sciences. 34 (3): 714–6. doi:10.1520/JFS12698J. PMID   2738573.
  31. Gabre RM; et al. (2005). "Life table of Chrysomya megacephala" (PDF). Acta Oecologica. 27 (3): 179–183. doi:10.1016/j.actao.2004.12.002.
  32. 1 2 Bunchu, Nophawan; et al. (2007). "Behavioral responses of Chrysomya megacephala to natural products". Parasitology Research. 102 (3): 419–29. doi:10.1007/s00436-007-0780-8. PMID   18026752. S2CID   363431. Archived from the original on 2011-06-10. Retrieved 2009-03-22.
  33. Sukontason, Kabkaew L.; et al. (2005). "First Report of Human Myiasis Caused by Chrysomya megacephala and Chrysomya rufifacies in Thailand, and Its Implication in Forensic Entomology" (PDF). J. Med. Entomol. 42 (4): 702–4. doi:10.1603/0022-2585(2005)042[0702:FROHMC]2.0.CO;2. PMID   16119563. S2CID   14885755.
  34. Hui, Yiu H. Handbook of Food Science, Technology, and Engineering. Florida: CRC Press, 2006.
  35. Wall R, Howard JJ, Bindu J (April 2001). "The Seasonal Abundance of Blowflies Infesting Drying Fish in South-West India". Journal of Applied Ecology. 38 (2): 339–348. doi:10.1046/j.1365-2664.2001.00588.x. JSTOR   2655802.
  36. Sripakdee, Duanghatai; et al. (2005). "Effect of Microwave Irradiation on the Blowfly Chrysomya Megacephala" (PDF). Chiang Mai University Research Note. 36 (4): 893.