Congenital disorder of glycosylation type IIc | |
---|---|
Other names | Rambam-Hasharon syndrome, CDG-IIc, CDG2C |
This condition ia inherited via autosomal recessive manner |
Congenital disorder of glycosylation type IIc or Leukocyte adhesion deficiency-2 (LAD2) is a type of leukocyte adhesion deficiency attributable to the absence of neutrophil sialyl-LewisX, a ligand of P- and E-selectin on vascular endothelium. [1] It is associated with SLC35C1 . [2]
This disorder was discovered in two unrelated Israeli boys 3 and 5 years of age, each the offspring of consanguineous parents. Both had severe mental retardation, short stature, a distinctive facial appearance, and the Bombay (hh) blood phenotype, and both were secretor- and Lewis-negative. They both had had recurrent severe bacterial infections similar to those seen in patients with LAD1, including pneumonia, periodontitis, otitis media, and localized cellulitis. Similar to that in patients with LAD1, their infections were accompanied by pronounced leukocytosis (30,000 to 150,000/mm3) but an absence of pus formation at sites of recurrent cellulitis. In vitro studies revealed a pronounced defect in neutrophil motility. Because the genes for the red blood cell H antigen and for the secretor status encode for distinct α1,2-fucosyltransferases and the synthesis of Sialyl-LewisX requires an α1,3-fucosyltransferase, it was postulated that a general defect in fucose metabolism is the basis for this disorder. It was subsequently found that GDP-L-fucose transport into Golgi vesicles was specifically impaired, [3] and then missense mutations in the GDP-fucose transporter cDNA of three patients with LAD2 were discovered. Thus, GDP-fucose transporter deficiency is a cause of LAD2. [4]
A congenital disorder of glycosylation is one of several rare inborn errors of metabolism in which glycosylation of a variety of tissue proteins and/or lipids is deficient or defective. Congenital disorders of glycosylation are sometimes known as CDG syndromes. They often cause serious, sometimes fatal, malfunction of several different organ systems in affected infants. The most common sub-type is PMM2-CDG where the genetic defect leads to the loss of phosphomannomutase 2 (PMM2), the enzyme responsible for the conversion of mannose-6-phosphate into mannose-1-phosphate.
Megaloblastic anemia is a type of macrocytic anemia. An anemia is a red blood cell defect that can lead to an undersupply of oxygen. Megaloblastic anemia results from inhibition of DNA synthesis during red blood cell production. When DNA synthesis is impaired, the cell cycle cannot progress from the G2 growth stage to the mitosis (M) stage. This leads to continuing cell growth without division, which presents as macrocytosis. Megaloblastic anemia has a rather slow onset, especially when compared to that of other anemias. The defect in red cell DNA synthesis is most often due to hypovitaminosis, specifically vitamin B12 deficiency or folate deficiency. Loss of micronutrients may also be a cause.
Chédiak–Higashi syndrome (CHS) is a rare autosomal recessive disorder that arises from a mutation of a lysosomal trafficking regulator protein, which leads to a decrease in phagocytosis. The decrease in phagocytosis results in recurrent pyogenic infections, albinism, and peripheral neuropathy.
Leukocyte adhesion deficiency (LAD) is a rare autosomal recessive disorder characterized by immunodeficiency resulting in recurrent infections. LAD is currently divided into three subtypes: LAD1, LAD2, and the recently described LAD3, also known as LAD-1/variant. In LAD3, the immune defects are supplemented by a Glanzmann thrombasthenia-like bleeding tendency.
A fucosyltransferase is an enzyme that transfers an L-fucose sugar from a GDP-fucose donor substrate to an acceptor substrate. The acceptor substrate can be another sugar such as the transfer of a fucose to a core GlcNAc (N-acetylglucosamine) sugar as in the case of N-linked glycosylation, or to a protein, as in the case of O-linked glycosylation produced by O-fucosyltransferase. There are various fucosyltransferases in mammals, the vast majority of which, are located in the Golgi apparatus. The O-fucosyltransferases have recently been shown to localize to the endoplasmic reticulum (ER).
Hyperimmunoglobulinemia E syndrome (HIES), of which the autosomal dominant form is called Job's syndrome or Buckley syndrome, is a heterogeneous group of immune disorders. Job's is also very rare at about 300 cases currently in the literature.
Sialyl LewisX (sLeX), also known as cluster of differentiation 15s (CD15s) or stage-specific embryonic antigen 1 (SSEA-1), is a tetrasaccharide carbohydrate which is usually attached to O-glycans on the surface of cells. It is known to play a vital role in cell-to-cell recognition processes. It is also the means by which an egg attracts sperm; first, to stick to it, then bond with it and eventually form a zygote.
In immunology, leukocyte extravasation is the movement of leukocytes out of the circulatory system (extravasation) and towards the site of tissue damage or infection. This process forms part of the innate immune response, involving the recruitment of non-specific leukocytes. Monocytes also use this process in the absence of infection or tissue damage during their development into macrophages.
Galactoside 3(4)-L-fucosyltransferase is an enzyme that in humans is encoded by the FUT3 gene.
Alpha-(1,3)-fucosyltransferase is an enzyme that in humans is encoded by the FUT7 gene.
Alpha-(1,3)-fucosyltransferase is an enzyme that in humans is encoded by the FUT6 gene.
GDP-fucose transporter 1 is a protein that in humans is encoded by the SLC35C1 gene.
GDP-L-fucose synthetase is an enzyme that in humans is encoded by the TSTA3 gene.
Leukocyte adhesion deficiency-1 (LAD1) is a rare and often fatal genetic disorder in humans.
O-linked glycosylation is the attachment of a sugar molecule to the oxygen atom of serine (Ser) or threonine (Thr) residues in a protein. O-glycosylation is a post-translational modification that occurs after the protein has been synthesised. In eukaryotes, it occurs in the endoplasmic reticulum, Golgi apparatus and occasionally in the cytoplasm; in prokaryotes, it occurs in the cytoplasm. Several different sugars can be added to the serine or threonine, and they affect the protein in different ways by changing protein stability and regulating protein activity. O-glycans, which are the sugars added to the serine or threonine, have numerous functions throughout the body, including trafficking of cells in the immune system, allowing recognition of foreign material, controlling cell metabolism and providing cartilage and tendon flexibility. Because of the many functions they have, changes in O-glycosylation are important in many diseases including cancer, diabetes and Alzheimer's. O-glycosylation occurs in all domains of life, including eukaryotes, archaea and a number of pathogenic bacteria including Burkholderia cenocepacia, Neisseria gonorrhoeae and Acinetobacter baumannii.
Fermitin family homolog 3) (FERMT3), also known as kindlin-3 (KIND3), MIG2-like protein (MIG2B), or unc-112-related protein 2 (URP2) is a protein that in humans is encoded by the FERMT3 gene. The kindlin family of proteins, member of the B4.1 superfamily, comprises three conserved protein homologues, kindlin 1, 2, and 3. They each contain a bipartite FERM domain comprising four subdomains F0, F1, F2, and F3 that show homology with the FERM head (H) domain of the cytoskeletal Talin protein. Kindlins have been linked to Kindler syndrome, leukocyte adhesion deficiency, cancer and other acquired human diseases. They are essential in the organisation of focal adhesions that mediate cell-extracellular matrix junctions and are involved in other cellular compartments that control cell-cell contacts and nucleus functioning. Therefore, they are responsible for cell to cell crosstalk via cell-cell contacts and integrin mediated cell adhesion through focal adhesion proteins and as specialised adhesion structures of hematopoietic cells they are also present in podosome's F actin surrounding ring structure. Isoform 2 may act as a repressor of NF-kappa-B and apoptosis
Neutrophil-specific granule deficiency is a rare congenital immunodeficiency characterized by an increased risk for pyogenic infections due to defective production of specific granules and gelatinase granules in patient neutrophils.
The Ca2+:H+ antiporter-2 (CaCA2) family (TC# 2.A.106) is a member of the lysine exporter (LysE) superfamily. Note that this family differs from the calcium:cation antiporter (CaCA) family which belongs to the cation diffusion facilitator (CDF) superfamily. CaCA2 family proteins are found in bacteria, archaea, yeast, plants and animals. This family, previously called the uncharacterized Protein Family 0016 (UPF0016), is well conserved throughout prokaryotes and eukaryotes. They are usually 200-350 amino acyl residues long and exhibit 5-7 transmembrane segments (TMSs).
SLC35A1-CDG is a rare inherited disorder that mainly affects the vascular systems of the body. It forms part of a large group of disorders called congenital disorders of glycosylation. It is caused by mutations in the SLC35A1 gene, located in the sixth chromosome.