In mathematical logic, the theory of infinite sets was first developed by Georg Cantor. Although this work has become a thoroughly standard fixture of classical set theory, it has been criticized in several areas by mathematicians and philosophers.
Cantor's theorem implies that there are sets having cardinality greater than the infinite cardinality of the set of natural numbers. Cantor's argument for this theorem is presented with one small change. This argument can be improved by using a definition he gave later. The resulting argument uses only five axioms of set theory.
Cantor's set theory was controversial at the start, but later became largely accepted. Most modern mathematics textbooks implicitly use Cantor's views on mathematical infinity. For example, a line is generally presented as the infinite set of its points, and it is commonly taught that there are more real numbers than rational numbers (see cardinality of the continuum).
Cantor's first proof that infinite sets can have different cardinalities was published in 1874. This proof demonstrates that the set of natural numbers and the set of real numbers have different cardinalities. It uses the theorem that a bounded increasing sequence of real numbers has a limit, which can be proved by using Cantor's or Richard Dedekind's construction of the irrational numbers. Because Leopold Kronecker did not accept these constructions, Cantor was motivated to develop a new proof. [1]
In 1891, he published "a much simpler proof ... which does not depend on considering the irrational numbers." [2] His new proof uses his diagonal argument to prove that there exists an infinite set with a larger number of elements (or greater cardinality) than the set of natural numbers N = {1, 2, 3, ...}. This larger set consists of the elements (x1, x2, x3, ...), where each xn is either m or w. [3] Each of these elements corresponds to a subset of N—namely, the element (x1, x2, x3, ...) corresponds to {n ∈ N: xn = w}. So Cantor's argument implies that the set of all subsets of N has greater cardinality than N. The set of all subsets of N is denoted by P(N), the power set of N.
Cantor generalized his argument to an arbitrary set A and the set consisting of all functions from A to {0, 1}. [4] Each of these functions corresponds to a subset of A, so his generalized argument implies the theorem: The power set P(A) has greater cardinality than A. This is known as Cantor's theorem.
The argument below is a modern version of Cantor's argument that uses power sets (for his original argument, see Cantor's diagonal argument). By presenting a modern argument, it is possible to see which assumptions of axiomatic set theory are used. The first part of the argument proves that N and P(N) have different cardinalities:
Next Cantor shows that is equinumerous with a subset of . From this and the fact that and have different cardinalities, he concludes that has greater cardinality than . This conclusion uses his 1878 definition: If A and B have different cardinalities, then either B is equinumerous with a subset of A (in this case, B has less cardinality than A) or A is equinumerous with a subset of B (in this case, B has greater cardinality than A). [7] This definition leaves out the case where A and B are equinumerous with a subset of the other set—that is, A is equinumerous with a subset of B and B is equinumerous with a subset of A. Because Cantor implicitly assumed that cardinalities are linearly ordered, this case cannot occur. [8] After using his 1878 definition, Cantor stated that in an 1883 article he proved that cardinalities are well-ordered, which implies they are linearly ordered. [9] This proof used his well-ordering principle "every set can be well-ordered", which he called a "law of thought". [10] The well-ordering principle is equivalent to the axiom of choice. [11]
Around 1895, Cantor began to regard the well-ordering principle as a theorem and attempted to prove it. [12] In 1895, Cantor also gave a new definition of "greater than" that correctly defines this concept without the aid of his well-ordering principle. [13] By using Cantor's new definition, the modern argument that P(N) has greater cardinality than N can be completed using weaker assumptions than his original argument:
Besides the axioms of infinity and power set, the axioms of separation, extensionality, and pairing were used in the modern argument. For example, the axiom of separation was used to define the diagonal subset the axiom of extensionality was used to prove and the axiom of pairing was used in the definition of the subset
Initially, Cantor's theory was controversial among mathematicians and (later) philosophers. As Leopold Kronecker claimed: "I don't know what predominates in Cantor's theory – philosophy or theology, but I am sure that there is no mathematics there."[ citation needed ] Many mathematicians agreed with Kronecker that the completed infinite may be part of philosophy or theology, but that it has no proper place in mathematics. Logician WilfridHodges ( 1998 ) has commented on the energy devoted to refuting this "harmless little argument" (i.e. Cantor's diagonal argument) asking, "what had it done to anyone to make them angry with it?" [14] Mathematician Solomon Feferman has referred to Cantor's theories as “simply not relevant to everyday mathematics.” [15]
Before Cantor, the notion of infinity was often taken as a useful abstraction which helped mathematicians reason about the finite world; for example the use of infinite limit cases in calculus. The infinite was deemed to have at most a potential existence, rather than an actual existence. [16] "Actual infinity does not exist. What we call infinite is only the endless possibility of creating new objects no matter how many exist already". [17] Carl Friedrich Gauss's views on the subject can be paraphrased as: "Infinity is nothing more than a figure of speech which helps us talk about limits. The notion of a completed infinity doesn't belong in mathematics." [18] In other words, the only access we have to the infinite is through the notion of limits, and hence, we must not treat infinite sets as if they have an existence exactly comparable to the existence of finite sets.
Cantor's ideas ultimately were largely accepted, strongly supported by David Hilbert, amongst others. Hilbert predicted: "No one will drive us from the paradise which Cantor created for us." [19] To which Wittgenstein replied "if one person can see it as a paradise of mathematicians, why should not another see it as a joke?" [20] The rejection of Cantor's infinitary ideas influenced the development of schools of mathematics such as constructivism and intuitionism.[ citation needed ]
Wittgenstein did not object to mathematical formalism wholesale, but had a finitist view on what Cantor's proof meant. The philosopher maintained that belief in infinities arises from confusing the intensional nature of mathematical laws with the extensional nature of sets, sequences, symbols etc. A series of symbols is finite in his view: In Wittgenstein's words: "...A curve is not composed of points, it is a law that points obey, or again, a law according to which points can be constructed."
He also described the diagonal argument as "hocus pocus" and not proving what it purports to do.
A common objection to Cantor's theory of infinite number involves the axiom of infinity (which is, indeed, an axiom and not a logical truth). Mayberry has noted that "... the set-theoretical axioms that sustain modern mathematics are self-evident in differing degrees. One of them—indeed, the most important of them, namely Cantor's Axiom, the so-called Axiom of Infinity—has scarcely any claim to self-evidence at all …" [21]
Another objection is that the use of infinite sets is not adequately justified by analogy to finite sets. Hermann Weyl wrote:
... classical logic was abstracted from the mathematics of finite sets and their subsets …. Forgetful of this limited origin, one afterwards mistook that logic for something above and prior to all mathematics, and finally applied it, without justification, to the mathematics of infinite sets. This is the Fall and original sin of [Cantor's] set theory ..." [22]
The difficulty with finitism is to develop foundations of mathematics using finitist assumptions, that incorporates what everyone would reasonably regard as mathematics (for example, that includes real analysis).
In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory equivalent to the statement that a Cartesian product of a collection of non-empty sets is non-empty. Informally put, the axiom of choice says that given any collection of sets, each containing at least one element, it is possible to construct a new set by choosing one element from each set, even if the collection is infinite. Formally, it states that for every indexed family of nonempty sets, there exists an indexed set such that for every . The axiom of choice was formulated in 1904 by Ernst Zermelo in order to formalize his proof of the well-ordering theorem.
In mathematics, specifically set theory, the continuum hypothesis is a hypothesis about the possible sizes of infinite sets. It states:
"There is no set whose cardinality is strictly between that of the integers and the real numbers."
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is countable if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements.
In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the case of infinite sets, the infinite cardinal numbers have been introduced, which are often denoted with the Hebrew letter (aleph) marked with subscript indicating their rank among the infinite cardinals.
In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set contains 3 elements, and therefore has a cardinality of 3. Beginning in the late 19th century, this concept was generalized to infinite sets, which allows one to distinguish between different types of infinity, and to perform arithmetic on them. There are two approaches to cardinality: one which compares sets directly using bijections and injections, and another which uses cardinal numbers. The cardinality of a set may also be called its size, when no confusion with other notions of size is possible.
Georg Ferdinand Ludwig Philipp Cantor was a mathematician who played a pivotal role in the creation of set theory, which has become a fundamental theory in mathematics. Cantor established the importance of one-to-one correspondence between the members of two sets, defined infinite and well-ordered sets, and proved that the real numbers are more numerous than the natural numbers. Cantor's method of proof of this theorem implies the existence of an infinity of infinities. He defined the cardinal and ordinal numbers and their arithmetic. Cantor's work is of great philosophical interest, a fact he was well aware of.
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory — as a branch of mathematics — is mostly concerned with those that are relevant to mathematics as a whole.
Cantor's diagonal argument is a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers – informally, that there are sets which in some sense contain more elements than there are positive integers. Such sets are now called uncountable sets, and the size of infinite sets is treated by the theory of cardinal numbers, which Cantor began.
In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded.
Zermelo set theory, as set out in a seminal paper in 1908 by Ernst Zermelo, is the ancestor of modern Zermelo–Fraenkel set theory (ZF) and its extensions, such as von Neumann–Bernays–Gödel set theory (NBG). It bears certain differences from its descendants, which are not always understood, and are frequently misquoted. This article sets out the original axioms, with the original text and original numbering.
In mathematical set theory, Cantor's theorem is a fundamental result which states that, for any set , the set of all subsets of known as the power set of has a strictly greater cardinality than itself.
In mathematics, two sets or classes A and B are equinumerous if there exists a one-to-one correspondence (or bijection) between them, that is, if there exists a function from A to B such that for every element y of B, there is exactly one element x of A with f(x) = y. Equinumerous sets are said to have the same cardinality (number of elements). The study of cardinality is often called equinumerosity (equalness-of-number). The terms equipollence (equalness-of-strength) and equipotence (equalness-of-power) are sometimes used instead.
In mathematical logic, New Foundations (NF) is a non-well-founded, finitely axiomatizable set theory conceived by Willard Van Orman Quine as a simplification of the theory of types of Principia Mathematica.
In set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers , sometimes called the continuum. It is an infinite cardinal number and is denoted by or
In set theory, Cantor's paradox states that there is no set of all cardinalities. This is derived from the theorem that there is no greatest cardinal number. In informal terms, the paradox is that the collection of all possible "infinite sizes" is not only infinite, but so infinitely large that its own infinite size cannot be any of the infinite sizes in the collection. The difficulty is handled in axiomatic set theory by declaring that this collection is not a set but a proper class; in von Neumann–Bernays–Gödel set theory it follows from this and the axiom of limitation of size that this proper class must be in bijection with the class of all sets. Thus, not only are there infinitely many infinities, but this infinity is larger than any of the infinities it enumerates.
Axiomatic constructive set theory is an approach to mathematical constructivism following the program of axiomatic set theory. The same first-order language with "" and "" of classical set theory is usually used, so this is not to be confused with a constructive types approach. On the other hand, some constructive theories are indeed motivated by their interpretability in type theories.
In set theory, the axiom of limitation of size was proposed by John von Neumann in his 1925 axiom system for sets and classes. It formalizes the limitation of size principle, which avoids the paradoxes encountered in earlier formulations of set theory by recognizing that some classes are too big to be sets. Von Neumann realized that the paradoxes are caused by permitting these big classes to be members of a class. A class that is a member of a class is a set; a class that is not a set is a proper class. Every class is a subclass of V, the class of all sets. The axiom of limitation of size says that a class is a set if and only if it is smaller than V—that is, there is no function mapping it onto V. Usually, this axiom is stated in the equivalent form: A class is a proper class if and only if there is a function that maps it onto V.
In constructive mathematics, a collection is subcountable if there exists a partial surjection from the natural numbers onto it. This may be expressed as
Pocket set theory (PST) is an alternative set theory in which there are only two infinite cardinal numbers, ℵ0 and c. The theory was first suggested by Rudy Rucker in his Infinity and the Mind. The details set out in this entry are due to the American mathematician Randall M. Holmes.
This is a glossary of set theory.
{{citation}}
: CS1 maint: location missing publisher (link){{citation}}
: CS1 maint: location missing publisher (link){{citation}}
: CS1 maint: location missing publisher (link){{citation}}
: CS1 maint: location missing publisher (link){{citation}}
: CS1 maint: location missing publisher (link)