dimethylargininase | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
EC no. | 3.5.3.18 | ||||||||
CAS no. | 123644-75-7 | ||||||||
Databases | |||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB structures | RCSB PDB PDBe PDBsum | ||||||||
Gene Ontology | AmiGO / QuickGO | ||||||||
|
In the field of enzymology, a dimethylargininase, also known as a dimethylarginine dimethylaminohydrolase (DDAH), is an enzyme that catalyzes the chemical reaction:
Thus, the two substrates of this enzyme are N-omega,N-omega'-methyl-L-arginine and H2O, whereas its two products are dimethylamine and L-citrulline.
Dimethylarginine dimethylaminohydrolase is an enzyme found in all mammalian cells. Two isoforms exist, DDAH I and DDAH II, with some differences in tissue distribution of the two isoforms [2] ). The enzyme degrades methylarginines, specifically asymmetric dimethylarginine (ADMA) and NG-monomethyl-L-arginine (MMA).
|
|
The methylarginines ADMA and MMA inhibit the enzyme nitric oxide synthase. [3] As such, DDAH is important in removing methylarginines, generated by protein degradation, from accumulating and inhibiting the generation of nitric oxide.
Inhibition of DDAH activity causes methylarginines to accumulate, blocking nitric oxide(NO) synthesis and causing vasoconstriction. [4] An impairment of DDAH activity appears to be involved in the elevation of plasma ADMA, and impairment of vascular relaxation observed in humans with cardiovascular disease or risk factors (such as hypercholesterolemia, diabetes mellitus, and insulin resistance). The activity of DDAH is impaired by oxidative stress, permitting ADMA to accumulate. A wide range of pathologic stimuli induce endothelial oxidative stress such as oxidized LDL-cholesterol, inflammatory cytokines, hyperhomocysteinemia, hyperglycemia and infectious agents. Each of these insults attenuates DDAH activity in vitro and in vivo. [5] [6] [7] [8] The attenuation of DDAH allows ADMA to accumulate, and to block NO synthesis. The adverse effect of these stimuli can be reversed in vitro by antioxidants, which preserve the activity of DDAH.
The sensitivity of DDAH to oxidative stress is conferred by a critical sulfhydryl in the active site of the enzyme that is required for the metabolism of ADMA. This sulfhydryl can also be reversibly inhibited by NO in an elegant form of negative feedback. [9] Homocysteine (a putative cardiovascular risk factor) mounts an oxidative attack on DDAH to form a mixed disulfide, inactivating the enzyme. [6] By oxidizing a sulfhydryl moiety critical for DDAH activity, homocysteine and other risk factors cause ADMA to accumulate and to suppress nitric oxide synthase (NOS) activity.
The critical role of DDAH activity in regulating NO synthesis in vivo was demonstrated using a transgenic DDAH mouse. [10] In this animal, the activity of DDAH is increased, and plasma ADMA levels are reduced by 50%. The reduction in plasma ADMA is associated with a significant increase in NOS activity, as plasma and urinary nitrate levels are doubled. The increase in NOS activity translates into a 15mmHg reduction in systolic blood pressure in the transgenic mouse. This study provides evidence for the importance of DDAH activity and plasma ADMA levels in the regulation of NO synthesis. Subsequent studies have shown that DDAH transgenic animals also manifest improvements in endothelial regeneration and angiogenesis, and reduced vascular obstructive disease, in association with the reduced plasma levels of ADMA. [11] [12] These findings are consistent with evidence from a number of groups that nitric oxide plays a critical role in vascular regeneration. By contrast, elevations in ADMA impair angiogenesis. These insights into the role of DDAH in degrading endogenous inhibitors of NOS, and thereby maintaining vascular NO production, may have important implications in vascular health and therapy for cardiovascular disease.
Arginine is the amino acid with the formula (H2N)(HN)CN(H)(CH2)3CH(NH2)CO2H. The molecule features a guanidino group appended to a standard amino acid framework. At physiological pH, the carboxylic acid is deprotonated (−CO2−) and both the amino and guanidino groups are protonated, resulting in a cation. Only the l-arginine (symbol Arg or R) enantiomer is found naturally. Arg residues are common components of proteins. It is encoded by the codons CGU, CGC, CGA, CGG, AGA, and AGG. The guanidine group in arginine is the precursor for the biosynthesis of nitric oxide. Like all amino acids, it is a white, water-soluble solid.
The organic compound citrulline is an α-amino acid. Its name is derived from citrullus, the Latin word for watermelon. Although named and described by gastroenterologists since the late 19th century, it was first isolated from watermelon in 1914 by Japanese researchers Yotaro Koga and Ryo Odake and further codified by Mitsunori Wada of Tokyo Imperial University in 1930. It has the formula H2NC(O)NH(CH2)3CH(NH2)CO2H. It is a key intermediate in the urea cycle, the pathway by which mammals excrete ammonia by converting it into urea. Citrulline is also produced as a byproduct of the enzymatic production of nitric oxide from the amino acid arginine, catalyzed by nitric oxide synthase.
In vascular diseases, endothelial dysfunction is a systemic pathological state of the endothelium. Along with acting as a semi-permeable membrane, the endothelium is responsible for maintaining vascular tone and regulating oxidative stress by releasing mediators, such as nitric oxide, prostacyclin and endothelin, and controlling local angiotensin-II activity.
Nitric oxide synthases (NOSs) are a family of enzymes catalyzing the production of nitric oxide (NO) from L-arginine. NO is an important cellular signaling molecule. It helps modulate vascular tone, insulin secretion, airway tone, and peristalsis, and is involved in angiogenesis and neural development. It may function as a retrograde neurotransmitter. Nitric oxide is mediated in mammals by the calcium-calmodulin controlled isoenzymes eNOS and nNOS. The inducible isoform, iNOS, involved in immune response, binds calmodulin at physiologically relevant concentrations, and produces NO as an immune defense mechanism, as NO is a free radical with an unpaired electron. It is the proximate cause of septic shock and may function in autoimmune disease.
Tetrahydrobiopterin (BH4, THB), also known as sapropterin (INN), is a cofactor of the three aromatic amino acid hydroxylase enzymes, used in the degradation of amino acid phenylalanine and in the biosynthesis of the neurotransmitters serotonin (5-hydroxytryptamine, 5-HT), melatonin, dopamine, norepinephrine (noradrenaline), epinephrine (adrenaline), and is a cofactor for the production of nitric oxide (NO) by the nitric oxide synthases. Chemically, its structure is that of a (dihydropteridine reductase) reduced pteridine derivative (quinonoid dihydrobiopterin).
Sir Salvador Enrique Moncada Seidner, FRS, FRCP, FMedSci is a Honduran pharmacologist and professor. He is currently Research Domain Director for Cancer at the University of Manchester.
Argininosuccinate synthase or synthetase is an enzyme that catalyzes the synthesis of argininosuccinate from citrulline and aspartate. In humans, argininosuccinate synthase is encoded by the ASS gene located on chromosome 9.
Asymmetric dimethylarginine (ADMA) is a naturally occurring chemical found in blood plasma. It is a metabolic by-product of continual protein modification processes in the cytoplasm of all human cells. It is closely related to L-arginine, a conditionally essential amino acid. ADMA interferes with L-arginine in the production of nitric oxide (NO), a key chemical involved in normal endothelial function and, by extension, cardiovascular health.
Nicorandil is a vasodilator drug used to treat angina.
Hyperhomocysteinemia is a medical condition characterized by an abnormally high level of total homocysteine in the blood, conventionally described as above 15 μmol/L.
Endothelial NOS (eNOS), also known as nitric oxide synthase 3 (NOS3) or constitutive NOS (cNOS), is an enzyme that in humans is encoded by the NOS3 gene located in the 7q35-7q36 region of chromosome 7. This enzyme is one of three isoforms that synthesize nitric oxide (NO), a small gaseous and lipophilic molecule that participates in several biological processes. The other isoforms include neuronal nitric oxide synthase (nNOS), which is constitutively expressed in specific neurons of the brain and inducible nitric oxide synthase (iNOS), whose expression is typically induced in inflammatory diseases. eNOS is primarily responsible for the generation of NO in the vascular endothelium, a monolayer of flat cells lining the interior surface of blood vessels, at the interface between circulating blood in the lumen and the remainder of the vessel wall. NO produced by eNOS in the vascular endothelium plays crucial roles in regulating vascular tone, cellular proliferation, leukocyte adhesion, and platelet aggregation. Therefore, a functional eNOS is essential for a healthy cardiovascular system.
Moexipril an angiotensin converting enzyme inhibitor used for the treatment of hypertension and congestive heart failure. Moexipril can be administered alone or with other antihypertensives or diuretics.
7-Nitroindazole, or 7-NI, is a heterocyclic small molecule containing an indazole ring that has been nitrated at the 7 position. Nitroindazole acts as a selective inhibitor for neuronal nitric oxide synthase, a hemoprotein enzyme that, in neuronal tissue, converts arginine to citrulline and nitric oxide (NO). Nitric oxide can diffuse through the plasma membrane into neighbouring cells, allowing cell signalling, so nitroindazole indirectly inhibits this signalling process. Other inhibitors exist such as 3-bromo-7-nitroindazole, which is more potent but less specific, or NPA (N-propyl-L-arginine), which acts on a different site.
In organic chemistry, S-nitrosothiols, also known as thionitrites, are organic compounds or functional groups containing a nitroso group attached to the sulfur atom of a thiol. S-Nitrosothiols have the general formula R−S−N=O, where R denotes an organic group. Originally suggested by Ignarro to serve as intermediates in the action of organic nitrates, endogenous S-nitrosothiols were discovered by Stamler and colleagues and shown to represent a main source of NO bioactivity in vivo. More recently, S-nitrosothiols have been implicated as primary mediators of protein S-nitrosylation, the oxidative modification of cysteine thiol that provides ubiquitous regulation of protein function.
Biological functions of nitric oxide are roles that nitric oxide plays within biology.
N-Methylarginine is an inhibitor of nitric oxide synthase. Chemically, it is a methyl derivative of the amino acid arginine. It is used as a biochemical tool in the study of physiological role of nitric oxide.
Protein detoxification is the process by which proteins containing methylated arginine are broken down and removed from the body.
Homoarginine is an nonproteinogenic alpha-amino acid. It is structurally equivalent to a one-methylene group-higher homolog of arginine and to the guanidino derivative of lysine. L-Homoarginine is the naturally-occurring enantiomer. Physiologically, homoarginine increases nitric oxide (NO) supply and betters endothelial functions in the body, with a particular correlation and effect towards cardiovascular outcome and mortality. At physiological pH, homoarginine is cationic: the guanidino group is protonated.
Arginase, type II is an arginase protein that in humans is encoded by the ARG2 gene.
Angiotensin (1-7) is an active heptapeptide of the renin–angiotensin system (RAS).