Formylmethanofuran—tetrahydromethanopterin N-formyltransferase

Last updated
formylmethanofuran-tetrahydromethanopterin N-formyltransferase
2fhj.jpg
formylmethanofuran-THMPT-formyltransferase tetramer, Methanopyrus kandleri
Identifiers
EC no. 2.3.1.101
CAS no. 105669-83-8
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins
FTR
PDB 1m5s EBI.jpg
formylmethanofuran:tetrahydromethanopterin fromyltransferase from methanosarcina barkeri
Identifiers
SymbolFTR
Pfam PF01913
InterPro IPR022667
SCOP2 1ftr / SCOPe / SUPFAM
TCDB 9.A.17
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
FTR, proximal lobe
PDB 1m5h EBI.jpg
formylmethanofuran:tetrahydromethanopterin formyltransferase from archaeoglobus fulgidus
Identifiers
SymbolFTR_C
Pfam PF02741
InterPro IPR002770
SCOP2 1ftr / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

In enzymology, a formylmethanofuran-tetrahydromethanopterin N-formyltransferase (EC 2.3.1.101) is an enzyme that catalyzes the chemical reaction

Contents

formylmethanofuran + 5,6,7,8-tetrahydromethanopterin methanofuran + 5-formyl-5,6,7,8-tetrahydromethanopterin

Thus, the two substrates of this enzyme are formylmethanofuran and 5,6,7,8-tetrahydromethanopterin, whereas its two products are methanofuran and 5-formyl-5,6,7,8-tetrahydromethanopterin.

This enzyme belongs to the family of transferases, specifically those acyltransferases transferring groups other than aminoacyl groups. The systematic name of this enzyme class is formylmethanofuran:5,6,7,8-tetrahydromethanopterin 5-formyltransferase. Other names in common use include formylmethanofuran-tetrahydromethanopterin formyltransferase, formylmethanofuran:tetrahydromethanopterin formyltransferase, N-formylmethanofuran(CHO-MFR):tetrahydromethanopterin(H4MPT), formyltransferase, FTR, formylmethanofuran:5,6,7,8-tetrahydromethanopterin, and N5-formyltransferase. This enzyme participates in folate biosynthesis.

Ftr from the thermophilic methanogen Methanopyrus kandleri (which has an optimum growth temperature 98 degrees C) is a hyperthermophilic enzyme that is absolutely dependent on the presence of lyotropic salts for activity and thermostability. The crystal structure of Ftr, determined to a reveals a homotetramer composed essentially of two dimers. Each subunit is subdivided into two tightly associated lobes both consisting of a predominantly antiparallel beta sheet flanked by alpha helices forming an alpha/beta sandwich structure. The approximate location of the active site was detected in a region close to the dimer interface. [1] Ftr from the mesophilic methanogen Methanosarcina barkeri and the sulphate-reducing archaeon Archaeoglobus fulgidus have a similar structure. [2]

In the methylotrophic bacterium Methylobacterium extorquens , Ftr interacts with three other polypeptides to form an Ftr/hydrolase complex which catalyses the hydrolysis of formyl-tetrahydromethanopterin to formate during growth on C1 substrates. [3]

Structural studies

As of late 2007, 5 structures have been solved for this class of enzymes, with PDB accession codes 1FTR, 1M5H, 1M5S, 2FHJ, and 2FHK.

Related Research Articles

Methanogens are microorganisms that produce methane as a metabolic byproduct in hypoxic conditions. They are prokaryotic and belong to the domain Archaea. All known methanogens are members of the archaeal phylum Euryarchaeota. Methanogens are common in wetlands, where they are responsible for marsh gas, and can occur in the digestive tracts of animals including ruminants and humans, where they are responsible for the methane content of belching and flatulence. In marine sediments, the biological production of methane, termed methanogenesis, is generally confined to where sulfates are depleted below the top layers. Methanogenic archaea populations play an indispensable role in anaerobic wastewater treatments. Other methanogens are extremophiles, found in environments such as hot springs and submarine hydrothermal vents as well as in the "solid" rock of Earth's crust, kilometers below the surface.

Methanopyrus is a genus of the Methanopyraceae.

<span class="mw-page-title-main">Pyruvate decarboxylase</span> Class of enzymes

Pyruvate decarboxylase is an enzyme that catalyses the decarboxylation of pyruvic acid to acetaldehyde. It is also called 2-oxo-acid carboxylase, alpha-ketoacid carboxylase, and pyruvic decarboxylase. In anaerobic conditions, this enzyme is participates in the fermentation process that occurs in yeast, especially of the genus Saccharomyces, to produce ethanol by fermentation. It is also present in some species of fish where it permits the fish to perform ethanol fermentation when oxygen is scarce. Pyruvate decarboxylase starts this process by converting pyruvate into acetaldehyde and carbon dioxide. Pyruvate decarboxylase depends on cofactors thiamine pyrophosphate (TPP) and magnesium. This enzyme should not be mistaken for the unrelated enzyme pyruvate dehydrogenase, an oxidoreductase, that catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA.

Tetrahydromethanopterin is a coenzyme in methanogenesis. It is the carrier of the C1 group as it is reduced to the methyl level, before transferring to the coenzyme M.

<span class="mw-page-title-main">Coenzyme M</span> Chemical compound

Coenzyme M is a coenzyme required for methyl-transfer reactions in the metabolism of archaeal methanogens, and in the metabolism of other substrates in bacteria. It is also a necessary cofactor in the metabolic pathway of alkene-oxidizing bacteria. CoM helps eliminate the toxic epoxides formed from the oxidation of alkenes such as propylene. The structure of this coenzyme was discovered by CD Taylor and RS Wolfe in 1974 while they were studying methanogenesis, the process by which carbon dioxide is transformed into methane in some anaerobic bacteria. The coenzyme is an anion with the formula HSCH
2
CH
2
SO
3
. It is named 2-mercaptoethanesulfonate and abbreviated HS–CoM. The cation is unimportant, but the sodium salt is most available. Mercaptoethanesulfonate contains both a thiol, which is the main site of reactivity, and a sulfonate group, which confers solubility in aqueous media.

<span class="mw-page-title-main">Methanofuran</span>

Methanofurans are a family of chemical compounds found in methanogenic archaea. These species feature a 2-aminomethylfuran linked to phenoxy group. At least three different end groups are recognized: R = tricarboxyheptanoyl (methanofuran), glutamyl-glutamyl, tricarboxy-2-hydroxyheptanoyl.

<span class="mw-page-title-main">Wood–Ljungdahl pathway</span> A set of biochemical reactions used by some bacteria

The Wood–Ljungdahl pathway is a set of biochemical reactions used by some bacteria. It is also known as the reductive acetyl-coenzyme A (Acetyl-CoA) pathway. This pathway enables these organisms to use hydrogen as an electron donor, and carbon dioxide as an electron acceptor and as a building block for biosynthesis.

<span class="mw-page-title-main">5,10-Methenyltetrahydromethanopterin hydrogenase</span> Class of enzymes

The 5,10-methenyltetrahydromethanopterin hydrogenase, the so-called iron-sulfur cluster-free hydrogenase, is an enzyme found in methanogenic archea such as Methanothermobacter marburgensis. It was discovered and first characterized by the Thauer group at the Max Planck Institute in Marburg. Hydrogenases are enzymes that either reduce protons or oxidize molecular dihydrogen.

<span class="mw-page-title-main">Coenzyme-B sulfoethylthiotransferase</span> Class of enzymes

In enzymology, coenzyme-B sulfoethylthiotransferase, also known as methyl-coenzyme M reductase (MCR) or most systematically as 2-(methylthio)ethanesulfonate:N-(7-thioheptanoyl)-3-O-phosphothreonine S-(2-sulfoethyl)thiotransferase is an enzyme that catalyzes the final step in the formation of methane. It does so by combining the hydrogen donor coenzyme B and the methyl donor coenzyme M. Via this enzyme, most of the natural gas on earth was produced. Ruminants produce methane because their rumens contain methanogenic prokaryotes (Archaea) that encode and express the set of genes of this enzymatic complex.

<span class="mw-page-title-main">Formate–tetrahydrofolate ligase</span>

In enzymology, a formate—tetrahydrofolate ligase is an enzyme that catalyzes the chemical reaction

Coenzyme F<sub>420</sub> Chemical compound

Coenzyme F420 or 8-hydroxy-5-deazaflavin is a coenzyme (sometimes called a cofactor) involved in redox reactions in methanogens, in many Actinomycetota, and sporadically in other bacterial lineages. It is a flavin derivative with an absorption maximum at 420 nm—hence its name. The coenzyme is a substrate for coenzyme F420 hydrogenase, 5,10-methylenetetrahydromethanopterin reductase and methylenetetrahydromethanopterin dehydrogenase.

In enzymology, an arylformamidase (EC 3.5.1.9) is an enzyme that catalyzes the chemical reaction

In enzymology, a beta-ureidopropionase (EC 3.5.1.6) is an enzyme that catalyzes the chemical reaction

In enzymology, a formylaspartate deformylase (EC 3.5.1.8) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Methenyltetrahydromethanopterin cyclohydrolase</span>

In enzymology, a methenyltetrahydromethanopterin cyclohydrolase (EC 3.5.4.27) is an enzyme that catalyzes the chemical reaction

In enzymology, formate C-acetyltransferase is an enzyme. Pyruvate formate lyase is found in Escherichia coli and other organisms. It helps regulate anaerobic glucose metabolism. Using radical non-redox chemistry, it catalyzes the reversible conversion of pyruvate and coenzyme-A into formate and acetyl-CoA. The reaction occurs as follows:

<span class="mw-page-title-main">Phosphoribosylglycinamide formyltransferase</span>

Phosphoribosylglycinamide formyltransferase (EC 2.1.2.2, 2-amino-N-ribosylacetamide 5'-phosphate transformylase, GAR formyltransferase, GAR transformylase, glycinamide ribonucleotide transformylase, GAR TFase, 5,10-methenyltetrahydrofolate:2-amino-N-ribosylacetamide ribonucleotide transformylase) is an enzyme with systematic name 10-formyltetrahydrofolate:5'-phosphoribosylglycinamide N-formyltransferase. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Cyclodeaminase domain</span>

In molecular biology, enzymes containing the cyclodeaminase domain function in channeling one-carbon units to the folate pool. In most cases, this domain acts as a formimidoyltetrahydrofolate cyclodeaminase, which catalyses the cyclisation of formimidoyltetrahydrofolate to methenyltetrahydrofolate as shown in reaction (1). In the methylotrophic bacterium Methylobacterium extorquens, however, it acts as a methenyltetrahydrofolate cyclohydrolase, which catalyses the interconversion of formyltetrahydrofolate and methylenetetrahydrofolate, as shown in reaction (2).

In enzymology, a formylmethanofuran dehydrogenase (EC 1.2.99.5) is an enzyme that catalyzes the chemical reaction:

Formatotrophs are organisms that can assimilate formate or formic acid to use as a carbon source or for reducing power. Some authors classify formatotrophs as one of the five trophic groups of methanogens, which also include hydrogenotrophs, acetotrophs, methylotrophs, and alcoholotrophs. Formatotrophs have garnered attention for applications in biotechnology as part of a "formate bioeconomy" in which synthesized formate could be used as a nutrient for microoganisms. Formate can be electrochemically synthesized from CO2 and renewable energy, and formatotrophs may be genetically modified to enhance production of biochemical products to be used as biofuels. Technical limitations in culturing formatotrophs have limited the discovery of natural formatotrophs and impeded research on their formate-metabolizing enzymes, which are of interest for applications in carbon sequestration and astrobiology.

References

  1. Ermler U, Merckel M, Thauer R, Shima S (May 1997). "Formylmethanofuran: tetrahydromethanopterin formyltransferase from Methanopyrus kandleri - new insights into salt-dependence and thermostability". Structure. 5 (5): 635–46. doi: 10.1016/s0969-2126(97)00219-0 . PMID   9195883.
  2. Mamat B, Roth A, Grimm C, Ermler U, Tziatzios C, Schubert D, Thauer RK, Shima S (September 2002). "Crystal structures and enzymatic properties of three formyltransferases from archaea: environmental adaptation and evolutionary relationship". Protein Sci. 11 (9): 2168–78. doi:10.1110/ps.0211002. PMC   2373594 . PMID   12192072.
  3. Pomper BK, Saurel O, Milon A, Vorholt JA (July 2002). "Generation of formate by the formyltransferase/hydrolase complex (Fhc) from Methylobacterium extorquens AM1". FEBS Lett. 523 (1–3): 133–7. doi: 10.1016/S0014-5793(02)02962-9 . PMID   12123819. S2CID   26661124.

Further reading

This article incorporates text from the public domain Pfam and InterPro: IPR022667