GG Tauri

Last updated
GG Tauri
Artist's impression of the double-star system GG Tauri-A.jpg
Artist's impression of the disk surrounding GG Tauri A
Credit: ESO/L. Calçada
Observation data
Epoch J2000        Equinox J2000
Constellation Taurus
GG Tauri A
Right ascension 04h 32m 30.31s [1]
Declination +17° 31 41.0 [1]
Apparent magnitude  (V)12.25 ± 0.03 / 14.70 ± 0.06 [2]
GG Tauri Ba
Right ascension 04h 32m 30.25s [3]
Declination +17° 31 30.9 [3]
Apparent magnitude  (V)17.11 ± 0.07 [2]
GG Tauri Bb
Right ascension 04h 32m 30.31s [4]
Declination +17° 31 29.9 [4]
Apparent magnitude  (V)19.94 ± 0.08 [2]
Characteristics
Spectral type K7 / M2 / M3 / M5 / M7 [5] [6]
U−B color index +0.06 [7]
B−V color index +1.38 [7]
Variable type T Tauri
Astrometry
Radial velocity (Rv)12.0 [8]  km/s
Proper motion (μ)RA: 15.6 [9]   mas/yr
Dec.: -21.1 [9]   mas/yr
Distance 450  ly
(140 [10]   pc)
Orbit [11] [12]
PrimaryGG Tau Aa
CompanionGG Tau Ab
Period (P)162+62
−15
yr
Semi-major axis (a)243 mas
(34 AU)
Eccentricity (e)0.28+0.05
−0.14
Inclination (i)143°
Longitude of the node (Ω)277+2
−2
°
Periastron epoch (T)2463400+1470
−5420
Argument of periastron (ω)
(secondary)
91+4
−13
°
Details
GG Tau Aa
Mass 0.78 ± 0.09 [13]   M
Radius 1.63 [14]   R
Luminosity 0.38 [15]   L
Temperature 3700 [15]   K
Age 1.5 [5]   Myr
GG Tau Ab
Luminosity0.133 + 0.067 [15]   L
Temperature 3300 + 3100 [15]   K
Age 1.5 [5]   Myr
GG Tau Ba
Mass 0.12 ± 0.02 [13]   M
Radius 1.45 [16]   R
Luminosity 0.096 [5]   L
Age 1.5 [5]   Myr
GG Tauri Bb
Mass 0.04 ± 0.003 [13]   M
Radius 0.497 [17]   R
Luminosity0.015 [5]   L
Age 1.5 [5]   Myr
Other designations
GG Tau, WDS J04325+1732, TYC 1270-897-1 [18]
Database references
SIMBAD data

GG Tauri, often abbreviated as GG Tau, is a quintuple star system in the constellation Taurus. At a distance of about 450 light years (140 parsecs) away, it is located within the Taurus-Auriga Star Forming Region. The system comprises three stars orbiting each other in a hierarchical triple system, known as GG Tauri A, and another binary star system more distant from the central system, known as GG Tauri B. [19]

Contents

The system is unusual because it contains two distinct circumstellar disks: one surrounding the entirety of GG Tauri A, and another surrounding the brightest star of GG Tauri A. [19] Its large size and close distance make it ideal to study how exoplanets form within multiple star systems. [20]

Properties

A visual band light curve for GG Tauri, adapted from Bouvier et al. (1993) GGTauLightCurve.png
A visual band light curve for GG Tauri, adapted from Bouvier et al. (1993)

GG Tauri consists of five stars, which are T Tauri stars – a class of variable stars that show irregular changes in brightness. [22] These stars are extremely young and more luminous than their main sequence counterparts, because they have not condensed into the normal size yet. The four components of GG Tauri stars are relatively cool K-type or M-type stars, with these spectral types: K7 for GG Tauri Aa, M0.5 for GG Tauri Ab, M5 for GG Tauri Ba, and M7 for GG Tauri Bb; [5] the age of the system is estimated to be 1.5 million years. [10]

A dynamical study of the system found the masses of the four components to be: 0.78 M for GG Tauri Aa, 0.68 M for GG Tauri Ab, 0.12 M for GG Tauri Ba, and 0.04 M for GG Tauri Bb. At 0.04 M, GG Tauri Bb has a substellar mass and is a brown dwarf. [13] Orbital motion has been detected in the central system (Aa and Ab), but not in the outer pair Ba and Bb (as its orbital period is too long). [11]

A preliminary orbit for GG Tauri Aa and Ab has been calculated, [11] but is not very well constrained. The orbit is moderately eccentric; [23] Some studies have determined that their orbit has a semimajor axis of about 34 au and is misaligned to the circumbinary disk by about 25 degrees. [23] However, other studies have found the orbit to be coplanar to the circumbinary disk, with a larger semimajor axis of about 60 au. [12]

Interferometric techniques have been used to observe GG Tauri Ab, the lower-mass component of the central system. GG Tauri Ab was found to be a binary star system comprising two red dwarfs (Ab1 = M2V, Ab2 = M3V), with a separation of about 4.5 AU. Its orbital period is currently estimated to be around 16 years. This would explain why the GG Tauri Ab's spectrum suggests an unusually low-mass star instead of the higher mass that was measured. [6]

Because of interactions with GG Tauri A, the outer pair GG Tauri Ba and Bb are not very stable. The internal orbit of GG Tauri Ba and Bb must be retrograde relative to its whole orbit around GG Tauri A, in order to be stable. [24]

Circumstellar disks

Artist's impression of the circumstellar disk surrounding GG Tauri A

T Tauri stars are usually surrounded by circumstellar disks of gas and dust. These disks coalesce into protoplanets and then into planets. [22]

The subsystem GG Tauri A has a large, circumbinary (technically circumtrinary) disk. Within the disk, GG Tauri Aa also has a disk, and furthermore, at least one of the Ab stars must have a disk as well. [15] The latter is inferred from the presence of a "gap" in the largest disk, detected at the three-o'clock position, at a position angle of about 268°. [25] First seen in 2002, [2] it is interpreted as a shadow because it does not rotate with the disk. [15] Interstellar material blocks the light from part of the disk, causing this shadow. [25] The Aa and Ab rings are coplanar to each other. [15]

The disk around GG Tauri Aa has a mass of about 0.1 M, or about the mass of Jupiter, [26] at a temperature of about 20 to 30 K. [27] GG Tauri Aa appears to have a jet coming out from the poles, as evidenced by forbidden Fe II lines. [20]

Mass is currently accreting from the inner disks into the stars themselves. Because the disks have not been consumed yet, the larger, circumbinary disk must be supplying mass into the smaller disks. [19] Several lines of evidence point to this. Firstly, a search for diatomic hydrogen gas (H2) could be found up to 100 AU away from the center of the system, but significant emission was also detected 30 au away. This emission was detected where a previous survey found gas streaming from the outer disk to the inner disk, so it was assumed that the emission resulted from mass falling from the inner disk to the outer disk. [28] Observations taken in 2014 showed similar results. [19] Secondly, near-infrared polarimetry of the area showed the same structure connecting the inner and outer disks. The stars of GG Tauri A are closer to the ring on the northern side (where the streamer is) than the southern side. [29] Finally, although there is not much gas falling into the inner disks, the accretion rate of gas has been measured to be ~6×10−8 M yr−1 which is at least the rate of accretion from the inner disks to the stars themselves. Therefore, the outer disk provides enough mass to replenish the inner disks. [30]

Possible protoplanets

At the edge of the outer disk, there is a "hot spot" with additional gas, and at a higher temperature of about 40 K. There are also spiral-shaped formations within the disk. [31] At the center of this "hot spot" may be a protoplanet termed GG Tauri Ac, which is still accreting mass. [20] This would explain the higher gas density and temperature, as well as the spiral formations. [31] If it exists, it would likely be about the mass of Neptune or smaller, given that it has not cleared out a gap at its location. Other planets could explain other spiral features within the disk. [31]


Chemistry

The chemistry of circumstellar disks is important for understanding planetary formation. The inner disk, like other protoplanetary disks, is rich in simple molecules containing elements such as carbon and sulfur. In 2018, hydrogen sulfide (H
2
S
) was reported, [32] and in 2021, thioxoethenylidene (CCS) was reported to exist within the disk. [33] Both are the first instances of those species known in a protoplanetary disk. [32] [33] The chemical mechanisms related to their formation are not very well understood. [33]

See also

Related Research Articles

<span class="mw-page-title-main">T Tauri</span> Star in constellation Taurus

T Tauri is a trinary variable star in the constellation Taurus, the prototype of the T Tauri stars. It was discovered in October 1852 by John Russell Hind. T Tauri appears from Earth amongst the Hyades cluster, not far from ε Tauri, but it is actually 420 light-years behind it and not a member of the cluster. The cloud to the west of the system is NGC 1555, known more commonly as Hind's Variable Nebula.

<span class="mw-page-title-main">Institut de radioastronomie millimétrique</span> Observatory

Institut de Radioastronomie Millimetrique (IRAM) is an international research institute and Europe's leading center for radio astronomy at millimeter wavelengths. Its mission is to explore the universe, study its origins and its evolution with two of the most advanced radio facilities in the world:

HD 176051 is a spectroscopic binary star system approximately 49 light years away from Earth in the constellation Lyra. The pair orbit with a period of 22,423 days and an eccentricity of 0.25. Compared to the Sun, they have a somewhat lower proportion of elements more massive than helium. Their individual masses are estimated at 1.07 and 0.71 solar masses (M). The system is moving closer to the Sun with a radial velocity of −47 km/s and will reach perihelion in about 269,000 years when it comes within roughly 17 ly (5.1 pc) of the Sun.

<span class="mw-page-title-main">Circumbinary planet</span> Planet that orbits two stars instead of one

A circumbinary planet is a planet that orbits two stars instead of one. The two stars orbit each other in a binary system, while the planet typically orbits farther from the center of the system than either of the two stars. In contrast, circumstellar planets in a binary system have stable orbits around one of the two stars, closer in than the orbital distance of the other star. Studies in 2013 showed that there is a strong hint that a circumbinary planet and its stars originate from a single disk.

<span class="mw-page-title-main">Kepler-35</span> Binary star system in the constellation Cygnus

Kepler-35 is a binary star system in the constellation of Cygnus. These stars, called Kepler-35A and Kepler-35B have masses of 89% and 81% solar masses respectively, and both are assumed to be of spectral class G. They are separated by 0.176 AU, and complete an eccentric orbit around a common center of mass every 20.73 days.

90 Tauri is a star in the zodiac constellation of Taurus, located 144 light-years away from the Sun. It is visible to the naked eye as a faint, white-hued star with an apparent visual magnitude of 4.27. 90 Tauri is a member of the Hyades cluster and is listed as a double star.

<span class="mw-page-title-main">Northern Extended Millimeter Array</span>

The Northern Extended Millimeter Array (NOEMA) is one of the largest astronomical facilities on European ground and the most powerful radio telescope in the Northern Hemisphere operating at millimeter wavelengths. It consists of a large array of twelve 15-meter antennas that can spread over distances of up to 1.7 kilometers, working together as a single telescope.

<span class="mw-page-title-main">AC Herculis</span> Spectroscopic binary star in the constellation Hercules

AC Herculis, is an RV Tauri variable and spectroscopic binary star in the constellation of Hercules. It varies in brightness between apparent magnitudes 6.85 and 9.0.

<span class="mw-page-title-main">IRAS 08544−4431</span> Variable star in the constellation Vela

IRAS 08544−4431 is a binary system surrounded by a dusty ring in the constellation of Vela. The system contains an RV Tauri variable star and a more massive but much less luminous companion.

<span class="mw-page-title-main">DH Tauri</span> Star in the constellation Taurus

DH Tauri, also known as DH Tau, is a type M star, located 140 parsecs away. It forms a binary system with DI Tauri 15″ away, and has a substellar companion, either a brown dwarf or massive exoplanet.

<span class="mw-page-title-main">AK Scorpii</span> Binary star in the constellation Scorpius

AK Scorpii is a Herbig Ae/Be star and spectroscopic binary star about 459 light-years distant in the constellation Scorpius. The star belongs to the nearby Upper Centaurus–Lupus star-forming region and the star is actively accreting material. The binary is surrounded by a circumbinary disk that was imaged with VLT/SPHERE in scattered light and with ALMA.

<span class="mw-page-title-main">RY Tauri</span> Star in the constellation Taurus

RY Tauri is a young T Tauri star in the constellation of Taurus about 450 light years away, belonging to the Taurus Molecular Cloud. It is more massive than typical T Tauri stars, and may be an intermediate between this class and the Herbig Ae/Be star type.

<span class="mw-page-title-main">BP Tauri</span> Star in the constellation Taurus

BP Tauri is a young T Tauri star in the constellation of Taurus about 416 light years away, belonging to the Taurus Molecular Cloud.

<span class="mw-page-title-main">HK Tauri</span> Young binary star system in the constellation of Taurus

HK Tauri is a young binary star system in the constellation of Taurus about 434 light-years away, belonging to the Taurus Molecular Cloud.

<span class="mw-page-title-main">GI Tauri and GK Tauri</span> Binary star system in the constellation of Taurus

GK Tauri is a young T Tauri-type pre-main sequence star in the constellation of Taurus about 421 light years away, belonging to the Taurus Molecular Cloud.

<span class="mw-page-title-main">HD 283750</span> Star in the constellation Taurus

HD 283750, also known as V833 Tauri, is a K-type main-sequence star 57 light-years away from the Sun. The star is much younger than the Sun's at 1 billion years. HD 283750 is similar to the Sun in its concentration of heavy elements.

<span class="mw-page-title-main">DL Tauri</span> Protostar system with planetary system in the constellation of Taurus

DL Tauri is a young T Tauri-type pre-main sequence stars in the constellation of Taurus about 522 light years away, belonging to the Taurus Molecular Cloud. It is partially obscured by the foreground gas cloud rich in carbon monoxide, and is still accreting mass, producing 0.14 L due to release of accretion energy. The stellar spectrum shows the lines of ionized oxygen, nitrogen, sulfur and iron.

<span class="mw-page-title-main">CQ Tauri</span> Star in the constellation Taurus

CQ Tauri is a young variable star in the equatorial constellation of Taurus. It is too faint to be visible to the naked eye with an apparent visual magnitude that ranges from 8.7 to 12.25. The distance to this star is approximately 487 light years based on parallax measurements, and it is drifting further away with a radial velocity of ~23 km/s. It appears to be part of the T-association Tau 4. CQ Tauri lies close enough to the ecliptic to undergo lunar occultations.

<span class="mw-page-title-main">V773 Tauri</span> Star system in the constellation Taurus

V773 Tauri is a young, multiple star system in the central region of Taurus, an equatorial constellation. This is a T Tauri-type variable star that ranges in apparent visual magnitude from 10.59 down to 10.95, which is too faint to be viewed with the naked eye. Based on various estimates, the system is located at a distance of approximately 433 light years from the Sun. It lies near the dark cloud Lynds 1495.

References

  1. 1 2 "** LEI 3Aa". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 10 February 2017.
  2. 1 2 3 4 Krist, John E.; Stapelfeldt, Karl R.; Watson, Alan M. (2002). "Hubble Space Telescope/WFPC2 Images of the GG Tauri Circumbinary Disk". The Astrophysical Journal. 570 (2): 785–792. arXiv: astro-ph/0201415 . Bibcode:2002ApJ...570..785K. doi:10.1086/339777. S2CID   8478005.
  3. 1 2 "** LEI 3Ba". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 10 February 2017.
  4. 1 2 "** LEI 3Bb". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 10 February 2017.
  5. 1 2 3 4 5 6 7 8 White, Russel J.; Ghez, A. M.; Reid, I. Neill; Schultz, Greg (1999). "A Test of Pre-Main-Sequence Evolutionary Models across the Stellar/Substellar Boundary Based on Spectra of the Young Quadruple GG Tauri". The Astrophysical Journal. 520 (2): 811–821. arXiv: astro-ph/9902318 . Bibcode:1999ApJ...520..811W. doi:10.1086/307494. S2CID   16100123.
  6. 1 2 Di Folco, E.; Dutrey, A.; Le Bouquin, J.-B.; Lacour, S.; Berger, J.-P.; Köhler, R.; Guilloteau, S.; Piétu, V.; Bary, J.; Beck, T.; Beust, H.; Pantin, E. (2014). "GG Tauri: the fifth element". Astronomy & Astrophysics. 565 (2): L2. arXiv: 1404.2205 . Bibcode:2014A&A...565L...2D. doi:10.1051/0004-6361/201423675. S2CID   119226957.
  7. 1 2 Smak, J. (1964). "On the colors of T Tauri stars and related objects". Astrophysical Journal. 139: 1095. Bibcode:1964ApJ...139.1095S. doi:10.1086/147851.
  8. Joy, Alfred H. (1949). "Bright-Line Stars among the Taurus Dark Clouds". Astrophysical Journal. 110: 424. Bibcode:1949ApJ...110..424J. doi:10.1086/145217.Accessed using SIMBAD.
  9. 1 2 Zacharias, N.; Urban, S. E.; Zacharias, M. I.; Wycoff, G. L.; Hall, D. M.; Germain, M. E.; Holdenried, E. R.; Winter, L. (2003). "VizieR Online Data Catalog: The Second U.S. Naval Observatory CCD Astrograph Catalog (UCAC2)". CDS/ADC Collection of Electronic Catalogues. Bibcode:2003yCat.1289....0Z.Accessed using SIMBAD.
  10. 1 2 Piétu, V.; Gueth, F.; Hily-Blant, P.; Schuster, K.-F.; Pety, J. (2011). "High resolution imaging of the GG Tauri system at 267 GHz". Astronomy & Astrophysics. 582: A81. arXiv: 1102.4029 . Bibcode:2011A&A...528A..81P. doi:10.1051/0004-6361/201015682. S2CID   118589049.
  11. 1 2 3 Köhler, R. (2011). "The orbit of GG Tauri A". Astronomy & Astrophysics. 530: A126. arXiv: 1104.2245 . Bibcode:2011A&A...530A.126K. doi:10.1051/0004-6361/201016327. Note: "most plausible orbit" is given in the starbox above.
  12. 1 2 Keppler, M.; Penzlin, A.; Benisty, M.; van Boekel, R.; Henning, T.; van Holstein, R. G.; Kley, W.; Garufi, A.; Ginski, C.; Brandner, W.; Bertrang, G. H.-M.; Boccaletti, A.; de Boer, J.; Bonavita, M.; Brown Sevilla, S.; Chauvin, G.; Dominik, C.; Janson, M.; Langlois, M.; Lodato, G.; Maire, A.-L.; Ménard, F.; Pantin, E.; Pinte, C.; Stolker, T.; Szulágyi, J.; Thebault, P.; Villenave, M.; Zurlo, A.; Rabou, P.; Feautrier, P.; Feldt, M.; Madec, F.; Wildi, F. (July 2020). "Gap, shadows, spirals, and streamers: SPHERE observations of binary-disk interactions in GG Tauri A". Astronomy & Astrophysics. 639: A62. arXiv: 2005.09037 . Bibcode:2020A&A...639A..62K. doi: 10.1051/0004-6361/202038032 . S2CID   218684431.
  13. 1 2 3 4 Beust, H.; Dutrey, A. (2005). "Dynamics of the young multiple system GG Tauri. I. Orbital fits and inner edge of the circumbinary disk of GG Tau A". Astronomy and Astrophysics. 439 (2): 585–594. Bibcode:2005A&A...439..585B. doi: 10.1051/0004-6361:20042441 .
  14. "Planet GG Tau Ae". 2023.
  15. 1 2 3 4 5 6 7 Brauer, R.; Pantin, E.; Di Folco, E.; Habart, E.; Dutrey, A.; Guilloteau, S. (2019). "GG Tauri A: Dark shadows on the ringworld". Astronomy & Astrophysics. 628: A88. arXiv: 1906.11582 . Bibcode:2019A&A...628A..88B. doi:10.1051/0004-6361/201935966. S2CID   195699759.
  16. https://exoplanet.eu/catalog/gg_tau_bb--7904/ https://iopscience.iop.org/article/10.3847/1538-4357/ab7ead
  17. "Planet GG Tau Bb". 2020.
  18. "V* GG Tau". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 11 February 2017.
  19. 1 2 3 4 "Astronomers Examine Ezekiel-like 'Wheel in a Wheel' in Binary System GG Tauri-A". Sci-News.com. 30 October 2014. Retrieved 10 February 2017.
  20. 1 2 3 Dutrey, Anne; Di Folco, Emmanuel; Beck, Tracy; Guilloteau, Stéphane (2016). "GG Tau: The ringworld and beyond". The Astronomy and Astrophysics Review. 24. doi:10.1007/s00159-015-0091-5. S2CID   123210114.
  21. Bouvier, J.; Cabrit, S.; Fernandez, M.; Martin, E. L.; Matthews, J. M. (May 1993). "COYOTES I : the photometric variability and rotational evolution of T Tauri stars". Astronomy and Astrophysics. 272: 176–206. Bibcode:1993A&A...272..176B . Retrieved 30 March 2022.
  22. 1 2 "T Tauri Stars | COSMOS" . Retrieved 11 February 2017.
  23. 1 2 Aly, Hossam; Lodato, Giuseppe; Cazzoletti, Paolo (2018). "On the secular evolution of GG Tau A circumbinary disc: A misaligned disc scenario". Monthly Notices of the Royal Astronomical Society. 480 (4): 4738. arXiv: 1809.06383 . Bibcode:2018MNRAS.480.4738A. doi: 10.1093/mnras/sty2179 .
  24. Beust, H.; Dutrey, A. (2006). "Dynamics of the young multiple system GG Tauri. II. Relation between the stellar system and the circumbinary disk". Astronomy & Astrophysics. 446 (1): 137–154. Bibcode:2006A&A...446..137B. doi: 10.1051/0004-6361:20053163 . S2CID   121583375.
  25. 1 2 Krist, J. E.; K. R. Stapelfeldt; Golimowski, D. A.; Ardila, D. R.; Clampin, M.; Martel, A. R.; Ford, H. C.; Illingworth, G. D.; Hartig, G. F. (2002). "HST/ACS Images of the GG Tauri Circumbinary Disk". The Astronomical Journal. 34. American Astronomical Society: 1319. arXiv: astro-ph/0508222 . Bibcode:2002AAS...20113601K. doi:10.1086/497069. S2CID   117225052.
  26. Scaife, Anna M. M. (2013). "The long-wavelength view of GG Tau A: rocks in the ring world". Monthly Notices of the Royal Astronomical Society. 435 (2): 1139–1146. arXiv: 1307.5146 . Bibcode:2013MNRAS.435.1139S. doi: 10.1093/mnras/stt1361 . S2CID   53062598.
  27. Andrews, Sean M.; et al. (2014). "Resolved Multifrequency Radio Observations of GG Tau". The Astrophysical Journal. 787 (2): 148. arXiv: 1404.5652 . Bibcode:2014ApJ...787..148A. doi:10.1088/0004-637X/787/2/148. S2CID   59520166.
  28. Beck, Tracy L.; Bary, Jeffrey S.; Dutrey, Anne; Piétu, Vincent; Guilloteau, Stéphane; Lubow, S. H.; Simon, M. (2012). "Circumbinary Gas Accretion onto a Central Binary: Infrared Molecular Hydrogen Emission from GG Tau A". The Astrophysical Journal. 754 (1): 72. arXiv: 1205.1526 . Bibcode:2012ApJ...754...72B. doi:10.1088/0004-637X/754/1/72. S2CID   119306325.
  29. Yang, Yi; et al. (2016). "Near-Infrared Imaging Polarimetry of Inner Region of GG Tau A Disk". The Astronomical Journal. 153 (1): 7. arXiv: 1610.09134 . Bibcode:2017AJ....153....7Y. doi: 10.3847/1538-3881/153/1/7 . S2CID   118704497.
  30. Phuong, N. T.; Dutrey, A.; Diep, P. N.; Guilloteau, S.; Chapillon, E.; Di Folco, E.; Tang, Y.-W.; Piétu, V.; Bary, J.; Beck, T.; Hersant, F.; Hoai, D. T.; Huré, J. M.; Nhung, P. T.; Pierens, A.; Tuan-Anh, P. (2020). "GG Tauri A: Gas properties and dynamics from the cavity to the outer disk". Astronomy & Astrophysics. 635: A12. arXiv: 2001.08147 . Bibcode:2020A&A...635A..12P. doi:10.1051/0004-6361/201936173. S2CID   210859248.
  31. 1 2 3 Phuong, N. T.; Dutrey, A.; Di Folco, E.; Guilloteau, S.; Pierens, A.; Bary, J.; Beck, T. L.; Chapillon, E.; Denis-Alpizar, O.; Diep, P. N.; Majumdar, L.; Piétu, V.; Tang, Y.-W. (2020). "Planet-induced spirals in the circumbinary disk of GG Tauri A". Astronomy & Astrophysics. 635: L9. Bibcode:2020A&A...635L...9P. doi: 10.1051/0004-6361/202037682 . S2CID   216250218.
  32. 1 2 Phuong, N. T.; Chapillon, E.; Majumdar, L.; Dutrey, A.; Guilloteau, S.; Piétu, V.; Wakelam, V.; Diep, P. N.; Tang, Y. -W.; Beck, T.; Bary, J. (2018). "First detection of H2S in a protoplanetary disk. The dense GG Tauri a ring". Astronomy and Astrophysics. 616. arXiv: 1808.00652 . Bibcode:2018A&A...616L...5P. doi:10.1051/0004-6361/201833766. S2CID   119195624.
  33. 1 2 3 Phuong, N. T.; Dutrey, A.; Chapillon, E.; Guilloteau, S.; Bary, J.; Beck, T. L.; Coutens, A.; Denis-Alpizar, O.; Di Folco, E.; Diep, P. N.; Majumdar, L.; Melisse, J. -P.; Lee, C. -W.; Pietu, V.; Stoecklin, T.; Tang, Y. -W. (2021). "An unbiased NOEMA 2.6 to 4 mm survey of the GG Tau ring: First detection of CCS in a protoplanetary disk". Astronomy and Astrophysics. 653: L5. arXiv: 2109.01979 . Bibcode:2021A&A...653L...5P. doi:10.1051/0004-6361/202141881. S2CID   237420449.