Geopsychrobacter electrodiphilus

Last updated

Geopsychrobacter electrodiphilus
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Geopsychrobacter

Holmes et al. 2005
Species:
G. electrodiphilus
Binomial name
Geopsychrobacter electrodiphilus
Holmes et al. 2005

Geopsychrobacter electrodiphilus is a species of bacteria, the type species of its genus. [lower-alpha 1] It is a psychrotolerant member of its family, capable of attaching to the anodes of sediment fuel cells and harvesting electricity by oxidation of organic compounds to carbon dioxide and transferring the electrons to the anode. [1]

Contents

In microbial communities, G. electrodiphilus could be similar to other Geobacteraceae. [1] The community may ferment complex organic matter, thereby breaking up plant matter, for example; G. electrodiphilus would then oxidize the fermentation products (especially acetate) to carbon dioxide, whereby a terminal electron acceptor [e.g. iron(III) oxide] would be reduced. [1] At least one strain (A1T) can oxidize hydrogen too. [1]

Since G. electrodiphilus belongs to the Geobateraceae and can transfer electrons to the outside, [1] one could assume that electron transfer to a methane producing archaeon could happen. There is another member of Geobacteraceae, well investigated for its interspecies electron transfer, even to a methanogen. [2]

Description

Geopsychrobacter electrodiphilus was isolated from the surface of an electrode (anode) of a marine sediment fuel cell. The sediments come from a water depth of 5 meters (Boston Harbor, Massachusetts, near the peninsula World's End). [1]

The name "Geopsychrobacter electrodiphilus" means somewhat like "electrode-loving rod of cold earth" and indicates that the microbe comes from the surface (earth, Geo), copes with cold (psychro), is rod-shaped (bacter) and was isolated from electrodes (electrodi), which it has voluntarily settled (philus). [1]

Two strains of Geopsychrobacter electrodiphilus were isolated (A1 and A2); Strain A1 was determined as the type strain (A1T; ATCC BAA-880T; DSM 16401T; JCM 12469) of the species Geopsychrobacter electrodiphilus and as the type strain of the genus. [1]

In a study on the cultivation of microbial communities in sludge, where sulphate reducers are likely to benefit, the proportion of Geopsychrobacter decreased. [3] An investigation of bacterial diversity in the cold outflow of an iron oxide-tainted plume of saltwater (Blood Falls, Antarctica) indicated about 11% of cells as G. electrodiphilus. [4] The plume were identified as a subglacial “ocean”, where coupled biogeochemical processes below the glacier enable microbes to grow in extended isolation, accumulating iron(II) despite the presence of an active sulfur cycle. [5]

Interaction with anodes

[ citation needed ] Holmes et al. 2004 proposed a likely mechanism for a special microbial fuel cell (sediment fuel cell), to support energy with help of G. electrodiphilus and other microbes of a community in marine sediments; based on the article, [1] this imaginary mechanism is summarized here:

To explain their proposal for the process inside the sediment fuel cell, authors [1] referred to previous investigations. [6] [7] [8]

Holmes et al. (2004) did not investigate microbial communities or technical devices; the aim of their investigations was to find organisms that transfer electrons to an electrode and to describe them. [1] The G. electrodiphilus strains were able to oxidize acetate, malate, fumarate, and citrate with electron transfer to an electrode poised at +0.52 V (in reference to a standard hydrogen electrode). [1]

One key point of harvesting energy using a sediment fuel cell seems to bridge the anaerobic environment of G. electrodiphilus and the aerobic water; the difference in redox potentials can be used.

Reduction of poorly crystalline Fe(III) oxide results in the formation of magnetite. [1] It is therefore conceivable that the oligodynamic effect in Geopsychrobacter is low and an application with metallic components inside a technical device would be possible.

See also

Notes

  1. A new genus and its type species, Geopsychrobacter elctrodipihilus, were effectively published by Holmes et al. [1] and both taxa got their authority when Validationlist No. 102 (2005, PMID   15774623, DOI:10.1099/ijs.0.63680-0) was published; see LPSN: Geopsychrobacter.
  2. In this context, “anaerobic” is a place without oxygen. See also “anaerobic organism”/ “aerobic organism”.
  3. In this context, “aerobic” is a place with oxygen. See also “aerobic organism”/ “anaerobic organism”.

Related Research Articles

Cellular respiration Process to convert glucose to ATP in cells

Cellular respiration is a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from nutrients into adenosine triphosphate (ATP), and then release waste products. The reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. Respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. The overall reaction occurs in a series of biochemical steps, some of which are redox reactions. Although cellular respiration is technically a combustion reaction, it is an unusual one because of the slow, controlled release of energy from the series of reactions.

Anaerobic respiration is respiration using electron acceptors other than molecular oxygen (O2). Although oxygen is not the final electron acceptor, the process still uses a respiratory electron transport chain.

Anammox Anaerobic ammonium oxidation, a microbial process of the nitrogen cycle

Anammox, an abbreviation for anaerobic ammonium oxidation, is a globally important microbial process of the nitrogen cycle that takes place in many natural environments. The bacteria mediating this process were identified in 1999, and were a great surprise for the scientific community. In the anammox reaction, nitrite and ammonium ions are converted directly into diatomic nitrogen and water.

Methanotrophs are prokaryotes that metabolize methane as their source of carbon and chemical energy. They are bacteria or archaea, can grow aerobically or anaerobically, and require single-carbon compounds to survive.

<i>Geobacter</i> Genus of anaerobic bacteria found in soil

Geobacter is a genus of bacteria. Geobacter species are anaerobic respiration bacterial species which have capabilities that make them useful in bioremediation. Geobacter was found to be the first organism with the ability to oxidize organic compounds and metals, including iron, radioactive metals, and petroleum compounds into environmentally benign carbon dioxide while using iron oxide or other available metals as electron acceptors. Geobacter species are also found to be able to respire upon a graphite electrode. They have been found in anaerobic conditions in soils and aquatic sediment.

Lithotrophs are a diverse group of organisms using an inorganic substrate to obtain reducing equivalents for use in biosynthesis or energy conservation via aerobic or anaerobic respiration. While lithotrophs in the broader sense include photolithotrophs like plants, chemolithotrophs are exclusively microorganisms; no known macrofauna possesses the ability to use inorganic compounds as electron sources. Macrofauna and lithotrophs can form symbiotic relationships, in which case the lithotrophs are called "prokaryotic symbionts". An example of this is chemolithotrophic bacteria in giant tube worms or plastids, which are organelles within plant cells that may have evolved from photolithotrophic cyanobacteria-like organisms. Chemolithotrophs belong to the domains Bacteria and Archaea. The term "lithotroph" was created from the Greek terms 'lithos' (rock) and 'troph' (consumer), meaning "eaters of rock". Many but not all lithoautotrophs are extremophiles.

Microbial metabolism is the means by which a microbe obtains the energy and nutrients it needs to live and reproduce. Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics. The specific metabolic properties of a microbe are the major factors in determining that microbe's ecological niche, and often allow for that microbe to be useful in industrial processes or responsible for biogeochemical cycles.

Microbial fuel cell (MFC) is a type of bioelectrochemical fuel cell system that generates electric current by diverting electrons produced from the microbial oxidation of reduced compounds on the anode to oxidized compounds such as oxygen on the cathode through an external electrical circuit. MFCs can be grouped into two general categories: mediated and unmediated. The first MFCs, demonstrated in the early 20th century, used a mediator: a chemical that transfers electrons from the bacteria in the cell to the anode. Unmediated MFCs emerged in the 1970s; in this type of MFC the bacteria typically have electrochemically active redox proteins such as cytochromes on their outer membrane that can transfer electrons directly to the anode. In the 21st century MFCs have started to find commercial use in wastewater treatment.

In biology, syntrophy, synthrophy, or cross-feeding is the phenomenon of one species feeding on the metabolic products of another species. In this type of biological interaction, the growth of one partner depends on the nutrients, growth factors, or substrates provided by the other partner. Jan Dolfing describes syntrophy as "the critical interdependency between producer and consumer". This term for nutritional interdependence is often used in microbiology to describe this symbiotic relationship between bacterial species. Morris et al. have described the process as "obligately mutualistic metabolism".

Electromethanogenesis is a form of electrofuel production where methane is produced by direct biological conversion of electrical current and carbon dioxide.

Bacterial nanowires Electrically conductive appendages produced by a number of bacteria

Bacterial nanowires are electrically conductive appendages produced by a number of bacteria most notably from the Geobacter and Shewanella genera. Conductive nanowires have also been confirmed in the oxygenic cyanobacterium Synechocystis PCC6803 and a thermophilic, methanogenic coculture consisting of Pelotomaculum thermopropionicum and Methanothermobacter thermoautotrophicus. From physiological and functional perspectives, bacterial nanowires are diverse. The precise role microbial nanowires play in their biological systems has not been fully realized, but several proposed functions exist. Outside of a naturally occurring environment, bacterial nanowires have shown potential to be useful in several fields, notably the bioenergy and bioremediation industries.

<i>Rhodopseudomonas palustris</i> Species of bacterium

Rhodopseudomonas palustris is a rod-shaped, Gram-negative purple nonsulfur bacterium, notable for its ability to switch between four different modes of metabolism.

Exoelectrogen

An exoelectrogen normally refers to a microorganism that has the ability to transfer electrons extracellularly. While exoelectrogen is the predominant name, other terms have been used: electrochemically active bacteria, anode respiring bacteria, and electricigens. Electrons exocytosed in this fashion are produced following ATP production using an electron transport chain (ETC) during oxidative phosphorylation. Conventional cellular respiration requires a final electron acceptor to receive these electrons. Cells that use molecular oxygen (O2) as their final electron acceptor are described as using aerobic respiration, while cells that use other soluble compounds as their final electron acceptor are described as using anaerobic respiration. However, the final electron acceptor of an exoelectrogen is found extracellularly and can be a strong oxidizing agent in aqueous solution or a solid conductor/electron acceptor. Two commonly observed acceptors are iron compounds (specifically Fe(III) oxides) and manganese compounds (specifically Mn(III/IV) oxides). As oxygen is a strong oxidizer, cells are able to do this strictly in the absence of oxygen.

Microbial electrosynthesis (MES) is a form of microbial electrocatalysis in which electrons are supplied to living microorganisms via a cathode in an electrochemical cell by applying an electric current. The electrons are then used by the microorganisms to reduce carbon dioxide to yield industrially relevant products. The electric current would ideally be produced by a renewable source of power. This process is the opposite to that employed in a microbial fuel cell, in which microorganisms transfer electrons from the oxidation of compounds to an anode to generate an electric current.

Geothrix fermentans is a rod-shaped, anaerobic bacterium. It is about 0.1 µm in diameter and ranges from 2-3 µm in length. Cell arrangement occurs singly and in chains. Geothrix fermentans can normally be found in aquatic sediments such as in aquifers. As an anaerobic chemoorganotroph, this organism is best known for its ability to use electron acceptors Fe(III), as well as other high potential metals. It also uses a wide range of substrates as electron donors. Research on metal reduction by G. fermentans has contributed to understanding more about the geochemical cycling of metals in the environment.

<i>Geobacter sulfurreducens</i> Species of bacterium

Geobacter sulfurreducens is a gram-negative metal and sulphur-reducing proteobacterium. It is rod-shaped, obligately anaerobic, non-fermentative, has flagellum and type four pili, and is closely related to Geobacter metallireducens. Geobacter sulfurreducens is an anaerobic species of bacteria that comes from the family of bacteria called Geobacteraceae. Under the genus of Geobacter, G. sulfurreducens is one out of twenty different species. The Geobacter genus was discovered by Derek R. Lovley in 1987. G. sulfurreducens was first isolated in Norman, Oklahoma, USA from materials found around the surface of a contaminated ditch.

Desulfobulbus propionicus is a Gram-negative, anaerobic chemoorganotroph. Three separate strains have been identified: 1pr3T, 2pr4, and 3pr10. It is also the first pure culture example of successful disproportionation of elemental sulfur to sulfate and sulfide. Desulfobulbus propionicus has the potential to produce free energy and chemical products.

Biological photovoltaics (BPV) is an energy-generating technology which uses oxygenic photoautotrophic organisms, or fractions thereof, to harvest light energy and produce electrical power. Biological photovoltaic devices are a type of biological electrochemical system, or microbial fuel cell, and are sometimes also called photo-microbial fuel cells or “living solar cells”. In a biological photovoltaic system, electrons generated by photolysis of water are transferred to an anode. A relatively high-potential reaction takes place at the cathode, and the resulting potential difference drives current through an external circuit to do useful work. It is hoped that using a living organism as the light harvesting material, will make biological photovoltaics a cost-effective alternative to synthetic light-energy-transduction technologies such as silicon-based photovoltaics.

Dissimilatory metal-reducing microorganisms are a group of microorganisms (both bacteria and archaea) that can perform anaerobic respiration utilizing a metal as terminal electron acceptor rather than molecular oxygen (O2), which is the terminal electron acceptor reduced to water (H2O) in aerobic respiration. The most common metals used for this end are iron [Fe(III)] and manganese [Mn(IV)], which are reduced to Fe(II) and Mn(II) respectively, and most microorganisms that reduce Fe(III) can reduce Mn(IV) as well. But other metals and metalloids are also used as terminal electron acceptors, such as vanadium [V(V)], chromium [Cr(VI)], molybdenum [Mo(VI)], cobalt [Co(III)], palladium [Pd(II)], gold [Au(III)], and mercury [Hg(II)].

Microbial oxidation of sulfur

Microbial oxidation of sulfur is the oxidation of sulfur by microorganisms to build their structural components. The oxidation of inorganic compounds is the strategy primarily used by chemolithotrophic microorganisms to obtain energy to survive, grow and reproduce. Some inorganic forms of reduced sulfur, mainly sulfide (H2S/HS) and elemental sulfur (S0), can be oxidized by chemolithotrophic sulfur-oxidizing prokaryotes, usually coupled to the reduction of oxygen (O2) or nitrate (NO3). Anaerobic sulfur oxidizers include photolithoautotrophs that obtain their energy from sunlight, hydrogen from sulfide, and carbon from carbon dioxide (CO2).

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Holmes DE, Nicoll JS, Bond DR, Lovley DR (October 2004). "Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell". Applied and Environmental Microbiology. 70 (10): 6023–30. Bibcode:2004ApEnM..70.6023H. doi:10.1128/AEM.70.10.6023-6030.2004. PMC   522133 . PMID   15466546.
  2. Holmes DE, Rotaru AE, Ueki T, Shrestha PM, Ferry JG, Lovley DR (2018). "Electron and Proton Flux for Carbon Dioxide Reduction in Methanosarcina barkeri During Direct Interspecies Electron Transfer". Frontiers in Microbiology. 9: 3109. doi: 10.3389/fmicb.2018.03109 . PMC   6315138 . PMID   30631315.
  3. Zeng GQ, Jia XS, Zheng XH, Yang LP, Sun GP (November 2014). "[Analysis of microbial community variation in the domestication process of sludge in a sulfate-reducing reactor]". Huan Jing Ke Xue = Huanjing Kexue. 35 (11): 4244–50. PMID   25639102.
  4. Mikucki JA, Priscu JC (June 2007). "Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier, Antarctica". Applied and Environmental Microbiology. 73 (12): 4029–39. Bibcode:2007ApEnM..73.4029M. doi:10.1128/AEM.01396-06. PMC   1932727 . PMID   17468282.
  5. Mikucki JA, Pearson A, Johnston DT, Turchyn AV, Farquhar J, Schrag DP, Anbar AD, Priscu JC, Lee PA (April 2009). "A contemporary microbially maintained subglacial ferrous "ocean"". Science. 324 (5925): 397–400. Bibcode:2009Sci...324..397M. doi:10.1126/science.1167350. PMID   19372431. S2CID   44802632.
  6. Bond DR, Lovley DR (March 2003). "Electricity production by Geobacter sulfurreducens attached to electrodes". Applied and Environmental Microbiology. 69 (3): 1548–55. Bibcode:2003ApEnM..69.1548B. doi:10.1128/AEM.69.3.1548-1555.2003. PMC   150094 . PMID   12620842.
  7. Tender LM, Reimers CE, Stecher HA, Holmes DE, Bond DR, Lowy DA, Pilobello K, Fertig SJ, Lovley DR (August 2002). "Harnessing microbially generated power on the seafloor". Nature Biotechnology. 20 (8): 821–5. doi:10.1038/nbt716. PMID   12091916. S2CID   927966.
  8. Reimers CE, Tender LM, Fertig S, Wang W (January 2001). "Harvesting energy from the marine sediment--water interface". Environmental Science & Technology. 35 (1): 192–5. Bibcode:2001EnST...35..192R. doi:10.1021/es001223s. PMID   11352010.

Further reading