Gliese 86

Last updated
Gliese 86
Observation data
Epoch J2000.0       Equinox J2000.0
Constellation Eridanus
Gliese 86 A
Right ascension 02h 10m 25.9191s [1]
Declination −50° 49 25.4672 [1]
Apparent magnitude  (V)6.17 [2]
Gliese 86 B
Right ascension 02h 10m 26s
Declination −50° 49 25
Characteristics
Spectral type K1V [3] + DQ6 [4] [5]
U−B color index 0.45
B−V color index 0.812 [6]
V−R color index 0.45
R−I color index 0.40
Astrometry
Radial velocity (Rv)56.7 [7]  km/s
Proper motion (μ)RA: 2,124.853±0.075 [1]   mas/yr
Dec.: 638.092±0.063 [1]   mas/yr
Parallax (π)92.7042 ± 0.0454  mas [1]
Distance 35.18 ± 0.02  ly
(10.787 ± 0.005  pc)
Absolute magnitude  (MV)5.95 [8]
Orbit [4]
PrimaryGliese 86 A
CompanionGliese 86 B
Period (P)≈100 yr
Semi-major axis (a)23.7 au
Eccentricity (e)0.429
Inclination (i)126.44°
Longitude of the node (Ω)234.2°
Details [9]
Gliese 86 A
Mass 0.83±0.05  M
Radius 0.79±0.03  R
Surface gravity (log g)4.56±0.10  cgs
Temperature 5180±80  K
Metallicity [Fe/H]−0.27±0.07  dex
Rotational velocity (v sin i)2.0±1.0 km/s
Age 10±1  Gyr
Gliese 86 B
Mass 0.5425 [4]   M
Temperature 8180±120 [5]   K
Other designations
Gliese 86A: CD−51°532, HD  13445, HIP  10138, HR  637, SAO  232658, WDS J02104-5049A [10]
Gliese 86B: GJ  86 B, HD  13445B, WDS J02104-5049B, WD  0208-510 [11]
Database references
SIMBAD data
Exoplanet Archive data
ARICNS data

Gliese 86 (13 G. Eridani, HD 13445) is a K-type main-sequence star approximately 35 light-years away in the constellation of Eridanus. It has been confirmed that a white dwarf orbits the primary star. In 1998 the European Southern Observatory announced that an extrasolar planet was orbiting the star. [12]

Contents

Stellar components

The primary companion (Gliese 86 A) is a K-type main-sequence star of spectral type K1V. The characteristics in comparison to the Sun are 83% the mass, 79% the radius, and 50% the luminosity. The star has a close-orbiting massive Jovian planet.

Gliese 86 B is a white dwarf located around 21 AU from the primary star, making the Gliese 86 system one of the tightest binaries known to host an extrasolar planet. [13] It was discovered in 2001 and initially suspected to be a brown dwarf, [14] but high contrast observations in 2005 suggested that the object is probably a white dwarf, as its spectrum does not exhibit molecular absorption features which are typical of brown dwarfs. [15] Assuming the white dwarf has a mass about half that of the Sun and that the linear trend observed in radial velocity measurements is due to Gliese 86 B, a plausible orbit for this star around Gliese 86 A has a semimajor axis of 18.42 AU and an eccentricity of 0.3974. [16] When both stars were on the main sequence, the separation between the two stars was closer, at around 9 AU. [4] More precise measurements for the white dwarf give it a mass of 55% the mass of the Sun [4] and a temperature of around 8200 K. [9]

Planetary system

The planet Gliese 86 b was discovered by the Swiss 1.2 m Leonhard Euler Telescope operated by the Geneva Observatory. [17] Such an object was formed from a protoplanetary disk that was truncated at 2 AU from the parent star. [4]

The radial velocity measurements of Gliese 86 show a linear trend once the motion due to this planet are taken out. This may be associated with the orbital motion of the white dwarf companion.

The Gliese 86 planetary system [18]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b ≥6.588±0.018  MJ 0.114340±0.00000115.76480±0.000040.048±0.002

See also

References

  1. 1 2 3 4 5 Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics . 616. A1. arXiv: 1804.09365 . Bibcode: 2018A&A...616A...1G . doi: 10.1051/0004-6361/201833051 . Gaia DR2 record for this source at VizieR.
  2. C. Cincunegui; P. J. D. Mauas (2004). "Library of flux-calibrated echelle spectra of southern late-type dwarfs with different activity levels". Astronomy and Astrophysics . 414 (2): 699–706. Bibcode: 2004A&A...414..699C . doi: 10.1051/0004-6361:20031671 . hdl: 11336/21158 . Archived from the original on 2019-06-22. Retrieved 2012-06-12.
  3. Gray, R. O.; et al. (July 2006), "Contributions to the Nearby Stars (NStars) Project: spectroscopy of stars earlier than M0 within 40 pc-The Southern Sample", The Astronomical Journal , 132 (1): 161–170, arXiv: astro-ph/0603770 , Bibcode: 2006AJ....132..161G , doi: 10.1086/504637 .
  4. 1 2 3 4 5 6 Zeng, Yunlin; Brandt, Timothy D.; Li, Gongjie; Dupuy, Trent J.; Li, Yiting; Brandt, G. Mirek; Farihi, Jay; Horner, Jonathan; Wittenmyer, Robert A.; Butler, R. Paul.; Tinney, Christopher G.; Carter, Bradley D.; Wright, Duncan J.; Jones, Hugh R. A.; o'Toole, Simon J. (2022). "The Gliese 86 Binary System: A Warm Jupiter Formed in a Disk Truncated at ≈2 au". The Astronomical Journal. 164 (5): 188. arXiv: 2112.06394 . Bibcode:2022AJ....164..188Z. doi: 10.3847/1538-3881/ac8ff7 . S2CID   252872318.
  5. 1 2 "Open Exoplanet Catalogue, Gliese 86". Archived from the original on 2020-07-14. Retrieved 2020-07-13.
  6. van Leeuwen, F. (2007). "Validation of the new Hipparcos reduction". Astronomy and Astrophysics. 474 (2): 653–664. arXiv: 0708.1752 . Bibcode: 2007A&A...474..653V . doi: 10.1051/0004-6361:20078357 . Archived from the original on 2019-03-28. Retrieved 2018-02-12. Vizier catalog entry Archived 2018-10-01 at the Wayback Machine
  7. Ramírez, I.; et al. (February 2013), "Oxygen abundances in nearby FGK stars and the galactic chemical evolution of the local disk and halo", The Astrophysical Journal, 764 (1): 78, arXiv: 1301.1582 , Bibcode: 2013ApJ...764...78R , doi: 10.1088/0004-637X/764/1/78 .
  8. Holmberg, J.; et al. (July 2009), "The Geneva-Copenhagen survey of the solar neighbourhood. III. Improved distances, ages, and kinematics", Astronomy and Astrophysics, 501 (3): 941–947, arXiv: 0811.3982 , Bibcode: 2009A&A...501..941H , doi: 10.1051/0004-6361/200811191 .
  9. 1 2 Fuhrmann, K.; et al. (2014). "On the Age of Gliese 86". The Astrophysical Journal. 785 (1). 68. Bibcode: 2014ApJ...785...68F . doi: 10.1088/0004-637X/785/1/68 .
  10. "HD 13445". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 2020-08-14.
  11. "HD 13445B". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 2020-08-14.
  12. "Extrasolar Planet in Double Star System Discovered from La Silla" (Press release). Garching, Germany: European Southern Observatory. November 24, 1998. Archived from the original on May 21, 2020. Retrieved December 29, 2012.
  13. Raghavan, Deepak; et al. (2006). "Two Suns in The Sky: Stellar Multiplicity in Exoplanet Systems". The Astrophysical Journal. 646 (1): 523–542. arXiv: astro-ph/0603836 . Bibcode: 2006ApJ...646..523R . doi: 10.1086/504823 .
  14. Els, S. G.; et al. (2001). "A second substellar companion in the Gliese 86 system. A brown dwarf in an extrasolar planetary system". Astronomy and Astrophysics . 370 (1): L1 –L4. Bibcode:2001A&A...370L...1E. doi: 10.1051/0004-6361:20010298 . Archived from the original on 2019-06-26. Retrieved 2009-12-19.
  15. Mugrauer, M.; Neuhäuser, R. (2005). "Gl86B: a white dwarf orbits an exoplanet host star". Monthly Notices of the Royal Astronomical Society: Letters . 361 (1): L15 –L19. arXiv: astro-ph/0506311 . Bibcode:2005MNRAS.361L..15M. doi: 10.1111/j.1745-3933.2005.00055.x . S2CID   16904466.
  16. Lagrange, A.-M.; et al. (2006). "New constrains on Gliese 86 B. VLT near infrared coronographic imaging survey of planetary hosts". Astronomy and Astrophysics . 459 (3): 955–963. Bibcode:2006A&A...459..955L. doi: 10.1051/0004-6361:20054710 .
  17. "Southern Sky extrasolar Planet search Programme". Archived from the original on 2020-07-15. Retrieved 2009-02-18.
  18. Wittenmyer, Robert A.; et al. (2020). "Cool Jupiters greatly outnumber their toasty siblings: occurrence rates from the Anglo-Australian Planet Search". Monthly Notices of the Royal Astronomical Society. 492 (1): 377–383. arXiv: 1912.01821 . Bibcode:2020MNRAS.492..377W. doi: 10.1093/mnras/stz3436 . S2CID   208617606.