Hafnium trifluoromethanesulfonate

Last updated
Hafnium(IV) triflate
Hafnium trifluoromethanesulfonate.svg
Names
IUPAC names
Hafnium(IV) trifluoromethanesulfonate
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 624-948-5
PubChem CID
  • InChI=1S/4CHF3O3S.Hf/c4*2-1(3,4)8(5,6)7;/h4*(H,5,6,7);/q;;;;+4/p-4
    Key: BQYMOILRPDTPPJ-UHFFFAOYSA-J
  • C(F)(F)(F)S(=O)(=O)[O-].C(F)(F)(F)S(=O)(=O)[O-].C(F)(F)(F)S(=O)(=O)[O-].C(F)(F)(F)S(=O)(=O)[O-].[Hf+4]
Properties
Hf(OTf)4
Molar mass 774.8 g/mol
AppearanceColourless solid
Melting point 350 °C (662 °F; 623 K)
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
irritantant
GHS labelling:
GHS-pictogram-acid.svg GHS-pictogram-exclam.svg
Danger
H314, H315, H319, H335
P261, P264, P271, P280, P302+P352, P304+P340, P305+P351+P338, P312, P321, P332+P313, P337+P313, P362, P403+P233, P405, P501
Flash point Non-flammable
Safety data sheet (SDS)
Related compounds
Other anions
Hafnium tetrachloride
Hafnium tetrafluoride
Hafnium(IV) bromide
Hafnium(IV) iodide
Other cations
Titanium(IV) triflate
Zirconium(IV) triflate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Hafnium(IV) triflate or hafnium trifluoromethansulfonate is a salt with the formula Hf(OSO2CF3)4, also written as Hf(OTf)4. Hafnium triflate is used as an impure mixture as a catalyst. Hafnium (IV) has an ionic radius of intermediate range (Al < Ti < Hf < Zr < Sc < Ln) and has an oxophilic hard character typical of group IV metals. This solid is a stronger Lewis acid than its typical precursor hafnium tetrachloride, HfCl4, because of the strong electron-withdrawing nature of the four triflate groups, which makes it a great Lewis acid and has many uses including as a great catalyst at low Lewis acid loadings for electrophilic aromatic substitution and nucleophilic substitution reactions. [1]

Contents

Preparation

The compound was first synthesized by the Kobayashi group in 1995 via the reaction of HfCl4 and triflic acid. [2] This solid is air stable, easy to handle, and commercially available. [3]

Uses

Electrophilic Substitutions

Hf(OTf)4 catalyzed Friedel-Craft acylation and alkylation reactions Kobayashi 1995.jpg
Hf(OTf)4 catalyzed Friedel-Craft acylation and alkylation reactions

Friedel-Craft acylation or alkylation reactions are some of the most important synthetic methodologies to introduce carbonyl or alkyl groups onto aromatic compounds. [4] The first Hf(OTf)4 catalyzed Friedel-Crafts acylation was developed by Kobayashi et al. in 1995. [2] [5] The authors demonstrated that Friedel-Crafts acylation could be achieved in excellent yield between arenes and acid anhydrides when utilizing Hf(OTf)4 as a catalyst. Hf(OTf)4, was the most effective in comparison to other Lewis acids including BF3 • OEt2 , Sc(OTf)3, and Zr(OTf)4. Similalrly, Hf(OTf)4 shows excellent activity in Friedel-Crafts alkylation’s, and enabled the alkylation of benzene with benzylic and tertiary alkyl chlorides.

Hf(OTf)4-catalyzed Friedel-Crafts alkylation has been utilized in the total synthesis of the altertoxin III framework. This approach provided a more efficient synthesis of the fused-ring structure compared to previous methods. [6]

Hf(OTf)4 mediated synthesis of altertoxins Altertoxins.jpg
Hf(OTf)4 mediated synthesis of altertoxins

Hf(OTf)4, alongside Sc(OTf)3 and In(OTf)3, has been shown to activate alkynes and enable electrophilic substitution. In 2004 Song and Lee et al. reported Hf(OTf)4-catalyzed Friedel-Crafts alkenylation of benzene with alkenyl derivatives. [7]

Hf(OTf)4 enabled electrophilic substitution of alkynes Hf(OTf)4 alkynes.jpg
Hf(OTf)4 enabled electrophilic substitution of alkynes

Nucleophilic Substitutions

In 2008, Zhu et al. demonstrated that Hf(OTf)4 was an effective catalyst for the thioacetalization of aldehydes and ketones. [8] In the absence of Lewis acid this reaction can occur in glycerol at 90 °C. Hf(OTf)4 accelerated the reaction rate under milder conditions with only 0.1 mol% catalyst loading. For example, Hf(OTf)4 catalyzes the reaction between benzaldehyde and 2.0 equiv. of either ethanethiol or 1.0 equiv. of propane-1,3,-dithiol readily in quantitative yield.

Hf(OTf)4 catalyzed thioacetalization of benzaldehyde Thioacetalization.jpg
Hf(OTf)4 catalyzed thioacetalization of benzaldehyde

This methodology was utilized in the total synthesis of (-)-leucomidine B from an enantioenriched monoacid synthesized via a Hf(OTf)4 catalyzed thioacetalization. [9]

Total synthesis of (-)-leucomidine B (-)-leucomidine B.jpg
Total synthesis of (-)-leucomidine B

In 2009, Nakamura et al. demonstrated that Hf(OTf)4 was uniquely able to catalyzed a Prins reaction between an aryl aldehyde and an O-protected/unprotected cyclohex-3-ene-1,2-dimethanol. [10]

Hf(OTf)4 catalyzed Prins cyclization Prins cyclization.jpg
Hf(OTf)4 catalyzed Prins cyclization

Related Research Articles

<span class="mw-page-title-main">Leaving group</span> Atom(s) which detach from the substrate during a chemical reaction

In chemistry, a leaving group is defined by the IUPAC as an atom or group of atoms that detaches from the main or residual part of a substrate during a reaction or elementary step of a reaction. However, in common usage, the term is often limited to a fragment that departs with a pair of electrons in heterolytic bond cleavage. In this usage, a leaving group is a less formal but more commonly used synonym of the term nucleofuge. In this context, leaving groups are generally anions or neutral species, departing from neutral or cationic substrates, respectively, though in rare cases, cations leaving from a dicationic substrate are also known.

The Friedel–Crafts reactions are a set of reactions developed by Charles Friedel and James Crafts in 1877 to attach substituents to an aromatic ring. Friedel–Crafts reactions are of two main types: alkylation reactions and acylation reactions. Both proceed by electrophilic aromatic substitution.

<span class="mw-page-title-main">Alkylation</span> Transfer of an alkyl group from one molecule to another

Alkylation is a chemical reaction that entails transfer of an alkyl group. The alkyl group may be transferred as an alkyl carbocation, a free radical, a carbanion, or a carbene. Alkylating agents are reagents for effecting alkylation. Alkyl groups can also be removed in a process known as dealkylation. Alkylating agents are often classified according to their nucleophilic or electrophilic character. In oil refining contexts, alkylation refers to a particular alkylation of isobutane with olefins. For upgrading of petroleum, alkylation produces a premium blending stock for gasoline. In medicine, alkylation of DNA is used in chemotherapy to damage the DNA of cancer cells. Alkylation is accomplished with the class of drugs called alkylating antineoplastic agents.

<span class="mw-page-title-main">Cerium(III) chloride</span> Chemical compound

Cerium(III) chloride (CeCl3), also known as cerous chloride or cerium trichloride, is a compound of cerium and chlorine. It is a white hygroscopic salt; it rapidly absorbs water on exposure to moist air to form a hydrate, which appears to be of variable composition, though the heptahydrate CeCl3·7H2O is known. It is highly soluble in water, and (when anhydrous) it is soluble in ethanol and acetone.

<span class="mw-page-title-main">Triflate</span> Chemical group (–OSO2CF3) or anion (charge –1)

In organic chemistry, triflate, is a functional group with the formula R−OSO2CF3 and structure R−O−S(=O)2−CF3. The triflate group is often represented by −OTf, as opposed to −Tf, which is the triflyl group, R−SO2CF3. For example, n-butyl triflate can be written as CH3CH2CH2CH2OTf.

<span class="mw-page-title-main">Aluminium chloride</span> Chemical compound

Aluminium chloride, also known as aluminium trichloride, is an inorganic compound with the formula AlCl3. It forms a hexahydrate with the formula [Al(H2O)6]Cl3, containing six water molecules of hydration. Both the anhydrous form and the hexahydrate are colourless crystals, but samples are often contaminated with iron(III) chloride, giving them a yellow colour.

<span class="mw-page-title-main">Pauson–Khand reaction</span> Chemical reaction

The Pauson–Khand (PK) reaction is a chemical reaction, described as a [2+2+1] cycloaddition. In it, an alkyne, an alkene and carbon monoxide combine into a α,β-cyclopentenone in the presence of a metal-carbonyl catalyst.

<span class="mw-page-title-main">Hafnium tetrachloride</span> Chemical compound

Hafnium(IV) chloride is the inorganic compound with the formula HfCl4. This colourless solid is the precursor to most hafnium organometallic compounds. It has a variety of highly specialized applications, mainly in materials science and as a catalyst.

<span class="mw-page-title-main">Scandium(III) trifluoromethanesulfonate</span> Chemical compound

Scandium trifluoromethanesulfonate, commonly called scandium triflate, is a chemical compound with formula Sc(SO3CF3)3, a salt consisting of scandium cations Sc3+ and triflate SO
3
CF
3
anions.

<span class="mw-page-title-main">Triflic acid</span> Chemical compound

Triflic acid, the short name for trifluoromethanesulfonic acid, TFMS, TFSA, HOTf or TfOH, is a sulfonic acid with the chemical formula CF3SO3H. It is one of the strongest known acids. Triflic acid is mainly used in research as a catalyst for esterification. It is a hygroscopic, colorless, slightly viscous liquid and is soluble in polar solvents.

Pivalic acid is a carboxylic acid with a molecular formula of (CH3)3CCO2H. This colourless, odiferous organic compound is solid at room temperature. Two abbreviation for pivalic acid are t-BuC(O)OH and PivOH. The pivalyl or pivaloyl group is abbreviated t-BuC(O).

Lanthanide triflates are triflate salts of the lanthanides. These salts have been investigated for application in organic synthesis as Lewis acid catalysts. These catalysts function similarly to aluminium chloride or ferric chloride, but they are water-tolerant (stable in water). Commonly written as Ln(OTf)3·(H2O)9 the nine waters are bound to the lanthanide, and the triflates are counteranions, so more accurately lanthanide triflate nonahydrate is written as [Ln(H2O)9](OTf)3.

The Fukuyama coupling is a coupling reaction taking place between a thioester and an organozinc halide in the presence of a palladium catalyst. The reaction product is a ketone. This reaction was discovered by Tohru Fukuyama et al. in 1998.

<span class="mw-page-title-main">Zinc triflate</span> Chemical compound

Zinc trifluoromethanesulfonate or zinc triflate is the zinc salt of trifluoromethanesulfonic acid. It is commonly used as a Lewis acid catalyst, e.g. in silylations.

A metal triflimidate M(NTf2)n in organic chemistry is a metal salt or complex of triflimidic acid and used as a catalyst.

Electrophilic aromatic substitution is an organic reaction in which an atom that is attached to an aromatic system is replaced by an electrophile. Some of the most important electrophilic aromatic substitutions are aromatic nitration, aromatic halogenation, aromatic sulfonation, alkylation and acylation Friedel–Crafts reaction.

In Lewis acid catalysis of organic reactions, a metal-based Lewis acid acts as an electron pair acceptor to increase the reactivity of a substrate. Common Lewis acid catalysts are based on main group metals such as aluminum, boron, silicon, and tin, as well as many early and late d-block metals. The metal atom forms an adduct with a lone-pair bearing electronegative atom in the substrate, such as oxygen, nitrogen, sulfur, and halogens. The complexation has partial charge-transfer character and makes the lone-pair donor effectively more electronegative, activating the substrate toward nucleophilic attack, heterolytic bond cleavage, or cycloaddition with 1,3-dienes and 1,3-dipoles.

<span class="mw-page-title-main">1-Tetralone</span> Chemical compound

1-Tetralone is a bicyclic aromatic hydrocarbon and a ketone. In terms of its structure, it can also be regarded as benzo-fused cyclohexanone. It is a colorless oil with a faint odor. It is used as starting material for agricultural and pharmaceutical agents. The carbon skeleton of 1-tetralone is found in natural products such as Aristelegone A (4,7-dimethyl-6-methoxy-1-tetralone) from the family of Aristolochiaceae used in traditional Chinese medicine.

The Grieco three-component condensation is an organic chemistry reaction that produces nitrogen-containing six-member heterocycles via a multi-component reaction of an aldehyde, a nitrogen component, such as aniline, and an electron-rich alkene. The reaction is catalyzed by trifluoroacetic acid or Lewis acids such as ytterbium trifluoromethanesulfonate (Yb(OTf)3). The reaction is named for Paul Grieco, who first reported it in 1985. In the original paper the nitrogen component were benzylamine, methyl amine or ammonium chloride, the reaction now also include anilines, similar to the earlier Povarov reaction.

<span class="mw-page-title-main">Teruaki Mukaiyama</span> Japanese chemist (1927–2018)

Teruaki Mukaiyama was a Japanese organic chemist. One of the most prolific chemists of the 20th century in the field of organic synthesis, Mukaiyama helped establish the field of organic chemistry in Japan after World War II.

References

  1. Ishitani, Haruro; Suzuki, Hirotsugu; Saito, Yuki; Yamashita, Yasuhiro; Kobayashi, Shū (2015). "Hafnium Trifluoromethanesulfonate [Hf(OTf)4] as a Unique Lewis Acid in Organic Synthesis". European Journal of Organic Chemistry. 2015 (25): 5485–5499. doi:10.1002/ejoc.201500423. ISSN   1099-0690.
  2. 1 2 Hachiya, Iwao; Moriwaki, Mitsuhiro; Kobayashi, Shu (1995-07-01). "Hafnium(IV) Trifluoromethanesulfonate, An Efficient Catalyst for the Friedel–Crafts Acylation and Alkylation Reactions". Bulletin of the Chemical Society of Japan. 68 (7): 2053–2060. doi:10.1246/bcsj.68.2053. ISSN   0009-2673.
  3. Li, Zhiya; Plancq, Baptiste; Ollevier, Thierry (2011), "Hafnium(IV) Trifluoromethanesulfonate", Encyclopedia of Reagents for Organic Synthesis, American Cancer Society, doi:10.1002/047084289x.rn01315, ISBN   978-0-470-84289-8 , retrieved 2021-06-12
  4. Calloway, N. O. (1935-12-01). "The Friedel-Crafts Syntheses". Chemical Reviews. 17 (3): 327–392. doi:10.1021/cr60058a002. ISSN   0009-2665.
  5. Hachiya, Iwao; Moriwaki, Mitsuhiro; Kobayashi, Shu (1995-01-16). "Catalytic Friedel-Crafts acylation reactions using hafnium triflate as a catalyst in lithium perchlorate-nitromethane". Tetrahedron Letters. 36 (3): 409–412. doi:10.1016/0040-4039(94)02221-V. ISSN   0040-4039.
  6. Geiseler, Oliver; Müller, Monika; Podlech, Joachim (2013-05-06). "Synthesis of the altertoxin III framework". Tetrahedron. 69 (18): 3683–3689. doi:10.1016/j.tet.2013.03.013. ISSN   0040-4020. S2CID   93455317.
  7. Song, Choong Eui; Jung, Da-un; Choung, Su Yhen; Roh, Eun Joo; Lee, Sang-gi (2004). "Dramatic Enhancement of Catalytic Activity in an Ionic Liquid: Highly Practical Friedel–Crafts Alkenylation of Arenes with Alkynes Catalyzed by Metal Triflates". Angewandte Chemie International Edition. 43 (45): 6183–6185. doi:10.1002/anie.200460292. ISSN   1521-3773. PMID   15549737.
  8. Wu, Yan-Chao; Zhu, Jieping (2008-12-05). "Hafnium Trifluoromethanesulfonate (Hafnium Triflate) as a Highly Efficient Catalyst for Chemoselective Thioacetalization and Transthioacetalization of Carbonyl Compounds". The Journal of Organic Chemistry. 73 (23): 9522–9524. doi:10.1021/jo8021988. ISSN   0022-3263. PMID   18991383.
  9. Gualtierotti, Jean-Baptiste; Pasche, Delphine; Wang, Qian; Zhu, Jieping (2014). "Phosphoric Acid Catalyzed Desymmetrization of Bicyclic Bislactones Bearing an All-Carbon Stereogenic Center: Total Syntheses of (−)-Rhazinilam and (−)-Leucomidine B". Angewandte Chemie International Edition. 53 (37): 9926–9930. doi:10.1002/anie.201405842. ISSN   1521-3773. PMID   25048385.
  10. Nakamura, Masayuki; Niiyama, Kenji; Yamakawa, Takeru (2009-11-25). "Versatile method for the synthesis of 4-substituted 6-methyl-3-oxabicyclo[3.3.1]non-6-ene-1-methanol derivatives: Prins-type cyclization reaction catalyzed by hafnium triflate". Tetrahedron Letters. 50 (47): 6462–6465. doi:10.1016/j.tetlet.2009.08.120. ISSN   0040-4039.