Haplogroup L3 | |
---|---|
Possible time of origin | 80,000–60,000 BP, [1] 70,000 BP [2] |
Possible place of origin | East Africa [3] [4] [5] [2] or Asia [6] |
Ancestor | L3'4 |
Descendants | L3a, L3b'f, L3c'd, L3e'i'k'x, L3h, M, N |
Defining mutations | 769, 1018, 16311 [7] |
Haplogroup L3 is a human mitochondrial DNA (mtDNA) haplogroup. The clade has played a pivotal role in the early dispersal of anatomically modern humans.
It is strongly associated with the out-of-Africa migration of modern humans of about 70–50,000 years ago. It is inherited by all modern non-African populations, as well as by some populations in Africa. [8] [3]
Haplogroup L3 arose close to 70,000 years ago, near the time of the recent out-of-Africa event. This dispersal originated in East Africa and expanded to West Asia, and further to South and Southeast Asia in the course of a few millennia, and some research suggests that L3 participated in this migration out of Africa. A 2007 estimate for the age of L3 suggested a range of 104–84,000 years ago. [9] More recent analyses, including Soares et al. (2012) arrive at a more recent date, of roughly 70–60,000 years ago. Soares et al. also suggest that L3 most likely expanded from East Africa into Eurasia sometime around 65–55,000 years ago as part of the recent out-of-Africa event, as well as from East Africa into Central Africa from 60 to 35,000 years ago. [3] In 2016, Soares et al. again suggested that haplogroup L3 emerged in East Africa, leading to the Out-of-Africa migration, around 70–60,000 years ago. [10]
Haplogroups L6 and L4 form sister clades of L3 which arose in East Africa at roughly the same time but which did not participate in the out-of-Africa migration. The ancestral clade L3'4'6 has been estimated at 110 kya, and the L3'4 clade at 95 kya. [8]
The possibility of an origin of L3 in Asia was proposed by Cabrera et al. (2018) based on the similar coalescence dates of L3 and its Eurasian-distributed M and N derivative clades (ca. 70 kya), the distant location in Southeast Asia of the oldest known subclades of M and N, and the comparable age of the paternal haplogroup DE. According to this hypothesis, after an initial out-of-Africa migration of bearers of pre-L3 (L3'4*) around 125 kya, there would have been a back-migration of females carrying L3 from Eurasia to East Africa sometime after 70 kya. The hypothesis suggests that this back-migration is aligned with bearers of paternal haplogroup E, which it also proposes to have originated in Eurasia. These new Eurasian lineages are then suggested to have largely replaced the old autochthonous male and female North-East African lineages. [6]
According to other research, though earlier migrations out of Africa of anatomically modern humans occurred, current Eurasian populations descend instead from a later migration from Africa dated between about 65,000 and 50,000 years ago (associated with the migration out of L3). [11] [4] [12]
Vai et al. (2019) suggest, from a newly discovered old and deeply-rooted branch of maternal haplogroup N found in early Neolithic North African remains, that haplogroup L3 originated in East Africa between 70,000 and 60,000 years ago, and both spread within Africa and left Africa as part of the Out-of-Africa migration, with haplogroup N diverging from it soon after (between 65,000 and 50,000 years ago) either in Arabia or possibly North Africa, and haplogroup M originating in the Middle East around the same time as N. [4]
A study by Lipson et al. (2019) analyzing remains from the Cameroonian site of Shum Laka found them to be more similar to modern-day Pygmy peoples than to West Africans, and suggests that several other groups (including the ancestors of West Africans, East Africans and the ancestors of non-Africans) commonly derived from a human population originating in East Africa between about 80,000-60,000 years ago, which they suggest was also the source and origin zone of haplogroup L3 around 70,000 years ago. [13]
L3 is common in Northeast Africa and some other parts of East Africa, [14] in contrast to others parts of Africa where the haplogroups L1 and L2 represent around two thirds of mtDNA lineages. [15] L3 sublineages are also frequent in the Arabian Peninsula.
L3 is subdivided into several clades, two of which spawned the macrohaplogroups M and N that are today carried by most people outside Africa. [15] There is at least one relatively deep non-M, non-N clade of L3 outside Africa, L3f1b6, which is found at a frequency of 1% in Asturias, Spain. It diverged from African L3 lineages at least 10,000 years ago. [16]
According to Maca-Meyer et al. (2001), "L3 is more related to Eurasian haplogroups than to the most divergent African clusters L1 and L2". [17] L3 is the haplogroup from which all modern humans outside Africa derive. [18] However, there is a greater diversity of major L3 branches within Africa than outside of it, the two major non-African branches being the L3 offshoots M and N.
L3 has seven equidistant descendants: L3a, L3b'f, L3c'd, L3e'i'k'x, L3h, M, N. Five are African, while two are associated with the Out of Africa event.
Haplogroup L3 has been observed in an ancient fossil belonging to the Pre-Pottery Neolithic B culture. [35] L3x2a was observed in a 4,500 year old hunter-gather excavated in Mota, Ethiopia, with the ancient fossil found to be most closely related to modern Southwest Ethiopian populations. [36] [37] Haplogroup L3 has also been found among ancient Egyptian mummies (1/90; 1%) excavated at the Abusir el-Meleq archaeological site in Middle Egypt, with the rest deriving from Eurasian subclades, which date from the Pre-Ptolemaic/late New Kingdom and Ptolemaic periods. The Ancient Egyptian mummies bore Near eastern genomic component most closely related to modern near easterners. [38] Additionally, haplogroup L3 has been observed in ancient Guanche fossils excavated in Gran Canaria and Tenerife on the Canary Islands, which have been radiocarbon-dated to between the 7th and 11th centuries CE. All of the clade-bearing individuals were inhumed at the Gran Canaria site, with most of these specimens found to belong to the L3b1a subclade (3/4; 75%) with the rest from both islands (8/11; 72%) deriving from Eurasian subclades. The Guanche skeletons also bore an autochthonous Maghrebi genomic component that peaks among modern Berbers, which suggests that they originated from ancestral Berber populations inhabiting northwestern Affoundnat a high ncy [39]
A variety of L3 have been uncovered in ancient remains associated with the Pastoral Neolithic and Pastoral Iron Age of East Africa. [40]
Culture | Genetic cluster or affinity | Country | Site | Date | Maternal Haplogroup | Paternal Haplogroup | Source |
---|---|---|---|---|---|---|---|
Early pastoral | PN | Kenya | Prettejohn's Gully (GsJi11) | 4060–3860 | L3f1b | – | Prendergast 2019 |
Pastoral Neolithic | PN | Kenya | Cole's Burial (GrJj5a) | 3350–3180 | L3i2 | E-V32 | Prendergast 2019 |
Pastoral Neolithic or Elmenteitan | PN | Kenya | Rigo Cave (GrJh3) | 2710–2380 | L3f | E-M293 | Prendergast 2019 |
Pastoral Neolithic | PN | Kenya | Naishi Rockshelter | 2750–2500 | L3x1a | E-V1515 (prob. E-M293) | Prendergast 2019 |
Pastoral Neolithic | PN | Tanzania | Gishimangeda Cave | 2490–2350 | L3x1 | – | Prendergast 2019 |
Pastoral Neolithic | PN | Kenya | Naivasha Burial Site | 2350–2210 | L3h1a1 | E-M293 | Prendergast 2019 |
Pastoral Neolithic | PN | Kenya | Naivasha Burial Site | 2320–2150 | L3x1a | E-M293 | Prendergast 2019 |
Pastoral Neolithic | PN | Tanzania | Gishimangeda Cave | 2150–2020 | L3i2 | E-M293 | Prendergast 2019 |
Pastoral Neolithic or Elmenteitan | PN | Kenya | Njoro River Cave II | 2110–1930 | L3h1a2a1 | – | Prendergast 2019 |
Pastoral Neolithic | N/A | Tanzania | Gishimangeda Cave | 2000–1900 | L3h1a2a1 | – | Prendergast 2019 |
Pastoral Neolithic | PN | Kenya | Ol Kalou | 1810–1620 | L3d1d | E-M293 | Prendergast 2019 |
Pastoral Iron Age | PIA | Kenya | Kisima Farm, C4 | 1060–940 | L3h1a1 | E-M75 (excl. M98) | Prendergast 2019 |
Pastoral Iron Age | PIA | Kenya | Emurua Ole Polos (GvJh122) | 420–160 | L3h1a1 | E-M293 | Prendergast 2019 |
Pastoral Iron Age | PN outlier | Kenya | Kokurmatakore | N/A | L3a2a | E-M35 (not E-M293) | Prendergast 2019 |
This phylogenetic tree of haplogroup L3 subclades is based on the paper by Mannis van Oven and Manfred Kayser Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation [7] and subsequent published research. [41]
Most Recent Common Ancestor (MRCA)
Phylogenetic tree of human mitochondrial DNA (mtDNA) haplogroups | |||||||||||||||||||||||||||||||||||||||
Mitochondrial Eve (L) | |||||||||||||||||||||||||||||||||||||||
L0 | L1–6 | ||||||||||||||||||||||||||||||||||||||
L1 | L2 | L3 | L4 | L5 | L6 | ||||||||||||||||||||||||||||||||||
M | N | ||||||||||||||||||||||||||||||||||||||
CZ | D | E | G | Q | O | A | S | R | I | W | X | Y | |||||||||||||||||||||||||||
C | Z | B | F | R0 | pre-JT | P | U | ||||||||||||||||||||||||||||||||
HV | JT | K | |||||||||||||||||||||||||||||||||||||
H | V | J | T |
Haplogroup X is a human mitochondrial DNA (mtDNA) haplogroup. It is found in North America, Europe, Western Asia, North Africa, and the Horn of Africa.
Haplogroup M is a human mitochondrial DNA (mtDNA) haplogroup. An enormous haplogroup spanning all the continents, the macro-haplogroup M, like its sibling the macro-haplogroup N, is a descendant of the haplogroup L3.
Haplogroup K, formerly Haplogroup UK, is a human mitochondrial DNA (mtDNA) haplogroup. It is defined by the HVR1 mutations 16224C and 16311C. It is now known that K is a subclade of U8.
Haplogroup T is a human mitochondrial DNA (mtDNA) haplogroup. It is believed to have originated around 25,100 years ago in the Near East.
Haplogroup U is a human mitochondrial DNA haplogroup (mtDNA). The clade arose from haplogroup R, likely during the early Upper Paleolithic. Its various subclades are found widely distributed across Northern and Eastern Europe, Central, Western and South Asia, as well as North Africa, the Horn of Africa, and the Canary Islands.
Haplogroup N is a human mitochondrial DNA (mtDNA) clade. A macrohaplogroup, its descendant lineages are distributed across many continents. Like its sibling macrohaplogroup M, macrohaplogroup N is a descendant of the haplogroup L3.
Haplogroup L2 is a human mitochondrial DNA (mtDNA) haplogroup with a widespread modern distribution, particularly in Subequatorial Africa. Its L2a subclade is a somewhat frequent and widely distributed mtDNA cluster on the continent, as well as among those in the Americas.
Haplogroup I is a human mitochondrial DNA (mtDNA) haplogroup. It is believed to have originated about 21,000 years ago, during the Last Glacial Maximum (LGM) period in West Asia. The haplogroup is unusual in that it is now widely distributed geographically, but is common in only a few small areas of East Africa, West Asia and Europe. It is especially common among the El Molo and Rendille peoples of Kenya, various regions of Iran, the Lemko people of Slovakia, Poland and Ukraine, the island of Krk in Croatia, the department of Finistère in France and some parts of Scotland and Ireland.
Haplogroup E-M96 is a human Y-chromosome DNA haplogroup. It is one of the two main branches of the older and ancestral haplogroup DE, the other main branch being haplogroup D. The E-M96 clade is divided into two main subclades: the more common E-P147, and the less common E-M75.
In human mitochondrial genetics, haplogroup E is a human mitochondrial DNA (mtDNA) haplogroup typical for the Malay Archipelago. It is a subgroup of haplogroup M9.
Haplogroup L0 is a human mitochondrial DNA (mtDNA) haplogroup.
Haplogroup DE is a human Y-chromosome DNA haplogroup. It is defined by the single nucleotide polymorphism (SNP) mutations, or UEPs, M1(YAP), M145(P205), M203, P144, P153, P165, P167, P183. DE is unique because it is distributed in several geographically distinct clusters. An immediate subclade, haplogroup D, is mainly found in East Asia, parts of Central Asia, and the Andaman Islands, but also sporadically in West Africa and West Asia. The other immediate subclade, haplogroup E, is common in Africa, and to a lesser extent the Middle East and southern Europe.
Haplogroup L4 is a human mitochondrial DNA (mtDNA) haplogroup. It is a somewhat uncommon maternal clade primarily found in East Africa.
Haplogroup H is a human mitochondrial DNA (mtDNA) haplogroup. The clade is believed to have originated in Southwest Asia, near present day Syria, around 20,000 to 25,000 years ago. Mitochondrial haplogroup H is today predominantly found in Europe, and is believed to have evolved before the Last Glacial Maximum (LGM). It first expanded in the northern Near East and Southern Caucasus, and later migrations from Iberia suggest that the clade reached Europe before the Last Glacial Maximum. The haplogroup has also spread to parts of Africa, Siberia and Inner Asia. Today, around 40% of all maternal lineages in Europe belong to haplogroup H.
African admixture in Europe refers to the presence of human genotypes attributable to periods of human population dispersals out of Africa in the genetic history of Europe.
In human mitochondrial genetics, L is the mitochondrial DNA macro-haplogroup that is at the root of the anatomically modern human mtDNA phylogenetic tree. As such, it represents the most ancestral mitochondrial lineage of all currently living modern humans, also dubbed "Mitochondrial Eve".
The genetic history of North Africa encompasses the genetic history of the people of North Africa. The most important source of gene flow to North Africa from the Neolithic Era onwards was from Western Asia, while the Sahara desert to the south and the Mediterranean Sea to the North were also important barriers to gene flow from sub-Saharan Africa and parts of Europe in prehistory. However, North Africa is connected to Western Asia via the Isthmus of Suez and the Sinai peninsula, while at the Straits of Gibraltar, North Africa and Europe are separated by only 15 km (9 mi), similarly Malta, Sicily, Canary Islands, Lampedusa and Crete are close to the coasts of North Africa.
Moroccan genetics encompasses the genetic history of the people of Morocco, and the genetic influence of this ancestry on world populations. It has been heavily influenced by geography.
The genetic history of Egypt reflects its geographical location at the crossroads of several major biocultural areas: North Africa, the Sahara, the Middle East, the Mediterranean and sub-Saharan Africa.
Haplogroup D, also known as D-CTS3946, is a Y-chromosome haplogroup. Like its relative distant sibling, haplogroup E-M96, D-CTS3946 has the YAP+ unique-event polymorphism, which defines their parent, haplogroup DE. D-CTS3946 has two basal branches, D1 and D2. D1 and D2 are found primarily in East Asia, at low frequency in Central Asia and Southeast Asia, and at very low frequency in Western Africa and Western Asia.