Hexafluoroacetone

Last updated
Hexafluoroacetone
Hexafluoraceton.svg
Hexafluoroacetone 3D.png
Names
Preferred IUPAC name
1,1,1,3,3,3-Hexafluoropropan-2-one
Other names
perfluoroacetone
acetone hexafluoride
perfluoro-2-propanone
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.010.616 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 211-676-3
PubChem CID
RTECS number
  • UC2450000
UNII
UN number 2420
  • InChI=1S/C3F6O/c4-2(5,6)1(10)3(7,8)9 Yes check.svgY
    Key: VBZWSGALLODQNC-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C3F6O/c4-2(5,6)1(10)3(7,8)9
    Key: VBZWSGALLODQNC-UHFFFAOYAI
  • FC(F)(F)C(=O)C(F)(F)F
Properties
C3F6O
Molar mass 166.02 g/mol
AppearanceColorless gas
Odor musty [1]
Density 1.32 g/ml, liquid
Melting point 129 °C (144 K)
Boiling point 28 °C (245 K)
Reacts with water
Vapor pressure 5.8 atm (20 °C) [1]
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Toxic (T),
Corrosive (C)
GHS labelling:
GHS-pictogram-acid.svg GHS-pictogram-skull.svg GHS-pictogram-exclam.svg GHS-pictogram-silhouette.svg
Danger
H301, H310, H311, H314, H315, H330, H360, H370, H372
P201, P202, P260, P262, P264, P270, P271, P280, P281, P284, P301+P310, P301+P330+P331, P302+P350, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P307+P311, P308+P313, P310, P312, P314, P320, P321, P322, P330, P332+P313, P361, P362, P363, P403+P233, P405, P410+P403, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g. white phosphorusSpecial hazard W: Reacts with water in an unusual or dangerous manner. E.g. sodium, sulfuric acid
3
0
2
W
Flash point Nonflammable [1]
NIOSH (US health exposure limits):
PEL (Permissible)
none [1]
REL (Recommended)
TWA 0.1 ppm (0.7 mg/m3) [skin] [1]
IDLH (Immediate danger)
N.D. [1]
Related compounds
Related ketones;
organofluorides
Acetone;
Hexafluoro-2-propanol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Hexafluoroacetone (HFA) is a chemical compound with the formula (CF3)2CO. It is structurally similar to acetone; however, its reactivity is markedly different. It a colourless, hygroscopic, nonflammable, highly reactive gas characterized by a musty odour. [2] According to electron diffraction, HFA and acetone adopt very similar structures, the C-O distance being only longer in the fluorinated compound (124.6 vs 121.0 pm), possibly due to steric effects. [3]

Contents

The term "hexafluoroacetone" can refer to the sesquihydrate (1.5 H2O), which is a hemihydrate of hexafluoropropane-2,2-diol (F
3
C)
2
C(OH)
2
, a geminal diol. Hydrated HFA behaves differently from the anhydrous material.

Synthesis

The industrial route to HFA involves treatment of hexachloroacetone with HF (a Finkelstein reaction): [4]

(CCl3)2CO + 6 HF → (CF3)2CO + 6 HCl

Laboratory methods

Hydrated HFA can be converted to HFA by treatment with hot sulfuric acid. [5]

It has also be prepared from hexafluoropropylene oxide, which will rearrange to give HFA when heated in the in the presence of a Lewis acid such as AlCl3. [6] The Lewis acid catalysed oxidation of hexafluoropropylene will also produce HFA, via a similar mechanism.

Although it is commercially available, HFA can be prepared on the laboratory-scale from hexafluoropropylene. [7] In the first step KF catalyzes the reaction of the alkene with elemental sulfur to give the 1,3-dithietane dimer of hexafluorothioacetone. This species is then oxidized by potassium iodate to give HFA. [8]

Uses

Hexafluoroacetone is used in the production of hexafluoroisopropanol:

(CF3)2CO + H2 → (CF3)2CHOH

It is also used as a precursor to hexafluoroisobutylene, [4] a monomer used in polymer chemistry, and as a building block in the synthesis of midaflur, bisphenol AF, 4,4′-(hexafluoroisopropylidene)diphthalic anhydride, and alitame.

Reactivity

Hexafluoroacetone imine is an unusual primary ketimine that is isolable. Hexafluoroacetone imine.svg
Hexafluoroacetone imine is an unusual primary ketimine that is isolable.
Ammonia adduct of hexafluoroacetone CF3-stabilizedHemiaminal.svg
Ammonia adduct of hexafluoroacetone

With water, hexafluoroacetone converts to the hydrate. The equilibrium constant (Keq) for the formation of this geminal diol is 106 M−1. The analogous equilibrium for acetone is an unfavorable 10−3 M−1. [9] Hexafluoroacetone-hydrates are acidic. In an analogous reaction, ammonia adds to hexafluoroacetone to give the hemiaminal (CF3)2C(OH)(NH2) which can be dehydrated with phosphoryl chloride to give the imine (CF3)2CNH. [10]

Nucleophiles attack occurs at the carbonyl carbon of Hexafluoroacetone, as illustrated above. Thus, HFA readily forms lactones when treated with hydroxy- and amine-substituted carboxylic acids. In such reactions, HFA serves both as electrophile and dehydrating agent: [5]

RCH(OH)CO2H + O=C(CF3)2 → RCH(O)CO2C(CF3)2 + (HO)2C(CF3)2

See also

Related Research Articles

<span class="mw-page-title-main">Ketone</span> Organic compounds of the form >C=O

In organic chemistry, a ketone is an organic compound with the structure R−C(=O)−R', where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group −C(=O)−. The simplest ketone is acetone, with the formula (CH3)2CO. Many ketones are of great importance in biology and industry. Examples include many sugars (ketoses), many steroids, and the solvent acetone.

<span class="mw-page-title-main">Hydrazine</span> Colorless flammable liquid with an ammonia-like odor

Hydrazine is an inorganic compound with the chemical formula N2H4. It is a simple pnictogen hydride, and is a colourless flammable liquid with an ammonia-like odour. Hydrazine is highly hazardous unless handled in solution as, for example, hydrazine hydrate.

<span class="mw-page-title-main">Dicarbonyl</span> Molecule containing two adjacent C=O groups

In organic chemistry, a dicarbonyl is a molecule containing two carbonyl groups. Although this term could refer to any organic compound containing two carbonyl groups, it is used more specifically to describe molecules in which both carbonyls are in close enough proximity that their reactivity is changed, such as 1,2-, 1,3-, and 1,4-dicarbonyls. Their properties often differ from those of monocarbonyls, and so they are usually considered functional groups of their own. These compounds can have symmetrical or unsymmetrical substituents on each carbonyl, and may also be functionally symmetrical or unsymmetrical.

A diol is a chemical compound containing two hydroxyl groups. An aliphatic diol may also be called a glycol. This pairing of functional groups is pervasive, and many subcategories have been identified. They are used as protecting groups of carbonyl groups, making them essential in synthesis of organic chemistry.

<span class="mw-page-title-main">Hexafluoro-2-propanol</span> Chemical compound

Hexafluoroisopropanol, commonly abbreviated HFIP, is the organic compound with the formula (CF3)2CHOH. This fluoroalcohol finds use as solvent in organic chemistry. Hexafluoro-2-propanol is transparent to UV light with high density, low viscosity and low refractive index. It is a colorless, volatile liquid with a pungent odor.

<span class="mw-page-title-main">Cyclohexanone</span> Chemical compound

Cyclohexanone is the organic compound with the formula (CH2)5CO. The molecule consists of six-carbon cyclic molecule with a ketone functional group. This colorless oily liquid has a sweet odor reminiscent of benzaldehyde. Over time, samples of cyclohexanone assume a pale yellow color. Cyclohexanone is slightly soluble in water and miscible with common organic solvents. Millions of tonnes are produced annually, mainly as a precursor to nylon.

<span class="mw-page-title-main">Hemiaminal</span> Organic compound or group with a hydroxyl and amine attached to the same carbon

In organic chemistry, a hemiaminal is a functional group or type of chemical compound that has a hydroxyl group and an amine attached to the same carbon atom: −C(OH)(NR2)−. R can be hydrogen or an alkyl group. Hemiaminals are intermediates in imine formation from an amine and a carbonyl by alkylimino-de-oxo-bisubstitution. Hemiaminals can be viewed as a blend of aminals and geminal diol. They are a special case of amino alcohols.

<span class="mw-page-title-main">Acetone</span> Organic compound ((CH3)2CO); simplest ketone

Acetone is an organic compound with the formula (CH3)2CO. It is the simplest and smallest ketone. It is a colorless, highly volatile, and flammable liquid with a characteristic pungent odour, very reminiscent of the smell of pear drops.

<i>N</i>,<i>N</i>-Dicyclohexylcarbodiimide Chemical compound

N,N′-Dicyclohexylcarbodiimide (DCC or DCCD) is an organic compound with the chemical formula (C6H11N)2C. It is a waxy white solid with a sweet odor. Its primary use is to couple amino acids during artificial peptide synthesis. The low melting point of this material allows it to be melted for easy handling. It is highly soluble in dichloromethane, tetrahydrofuran, acetonitrile and dimethylformamide, but insoluble in water.

<span class="mw-page-title-main">Methyl methacrylate</span> Organic monomer

Methyl methacrylate (MMA) is an organic compound with the formula CH2=C(CH3)COOCH3. This colorless liquid, the methyl ester of methacrylic acid (MAA), is a monomer produced on a large scale for the production of poly(methyl methacrylate) (PMMA).

<i>tert</i>-Butyl alcohol Chemical compound

tert-Butyl alcohol is the simplest tertiary alcohol, with a formula of (CH3)3COH (sometimes represented as t-BuOH). Its isomers are 1-butanol, isobutanol, and butan-2-ol. tert-Butyl alcohol is a colorless solid, which melts near room temperature and has a camphor-like odor. It is miscible with water, ethanol and diethyl ether.

<span class="mw-page-title-main">Geminal diol</span>

A geminal diol is any organic compound having two hydroxyl functional groups (-OH) bound to the same carbon atom. Geminal diols are a subclass of the diols, which in turn are a special class of alcohols. Most of the geminal diols are considered unstable.

<span class="mw-page-title-main">2,2,2-Trifluoroethanol</span> Chemical compound

2,2,2-Trifluoroethanol is the organic compound with the formula CF3CH2OH. Also known as TFE or trifluoroethyl alcohol, this colourless, water-miscible liquid has a smell reminiscent of ethanol. Due to the electronegativity of the trifluoromethyl group, this alcohol exhibits a stronger acidic character compared to ethanol.

Geminal halide hydrolysis is an organic reaction. The reactants are geminal dihalides with a water molecule or a hydroxide ion. The reaction yields ketones from secondary halides or aldehydes from primary halides.

<span class="mw-page-title-main">Hexachloroacetone</span> Chemical compound

Hexachloroacetone is an organic compound with the formula (Cl3C)2CO. It is also called hexachloropropanone or perchloroacetone. Numbers indicating the position of the chlorine-atoms are generally omitted as all the possible positions are substituted with chlorine. It is a colorless liquid, slightly soluble in water.

Acetone cyanohydrin (ACH) is an organic compound used in the production of methyl methacrylate, the monomer of the transparent plastic polymethyl methacrylate (PMMA), also known as acrylic. It liberates hydrogen cyanide easily, so it is used as a source of such. For this reason, this cyanohydrin is also highly toxic.

Perfluoroethers are a class of organofluorine compound containing one or more ether functional group. In general these compounds are structurally analogous to the related hydrocarbon ethers, except for the distinctive properties of fluorocarbons.

<span class="mw-page-title-main">Hexafluoropropylene oxide</span> Chemical compound

Hexafluoropropylene oxide (HFPO) is an intermediate used in industrial organofluorine chemistry; specifically it is a monomer for fluoropolymers. This colourless gas is the epoxide of hexafluoropropylene, which is a fluorinated analog of propylene oxide, HFPO is produced by Chemours and 3M and as a precursor to the lubricant Krytox and related materials. It is generated by oxidation of perfluoropropylene, e.g. with oxygen as well as other oxidants.

<span class="mw-page-title-main">Trifluoroacetone</span> One of the lightest perfluoro compounds

Trifluoroacetone (1,1,1-trifluoroacetone) is an organofluorine compound with the chemical formula CF3C(O)CH3. The compound is a colorless liquid with chloroform-like odour.

<span class="mw-page-title-main">Acetone imine</span> Chemical compound

Acetone imine, or 2-propanimine is an organic compound and an imine with the chemical formula (CH3)2CNH. It is a volatile and flammable liquid at room temperature. It is the simplest ketimine. This compound is mainly of academic interest.

References

  1. 1 2 3 4 5 6 NIOSH Pocket Guide to Chemical Hazards. "#0319". National Institute for Occupational Safety and Health (NIOSH).
  2. CDC - NIOSH Pocket Guide to Chemical Hazards
  3. Hilderbrandt, R. L.; Andreassen, A. L.; Bauer, Simon Harvey (1970). "Electron diffraction investigation of hexafluoroacetone, hexafluoropropylimine, and hexafluoroisobutene". The Journal of Physical Chemistry. 74 (7): 1586–1592. doi:10.1021/j100702a030.
  4. 1 2 Günter Siegemund; Werner Schwertfeger; Andrew Feiring; Bruce Smart; Fred Behr; Herward Vogel; Blaine McKusick (2002). "Fluorine Compounds, Organic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a11_349.
  5. 1 2 Spengler, Jan; Böttcher, Christoph; Albericio, Fernando; Burger, Klaus (2006). "Hexafluoroacetone as Protecting and Activating Reagent: New Routes to Amino, Hydroxy, and Mercapto Acids and Their Application for Peptide and Glyco- and Depsipeptide Modification". Chemical Reviews. 106 (11): 4728–4746. doi:10.1021/cr0509962. PMID   17091933.
  6. Millauer, Hans; Schwertfeger, Werner; Siegemund, Günter (March 1985). "Hexafluoropropene Oxide — A Key Compound in Organofluorine Chemistry". Angewandte Chemie International Edition in English. 24 (3): 161–179. doi:10.1002/anie.198501611.
  7. Anello, Louis G.; Van der Puy, Michael (January 1982). "A convenient synthesis of hexafluoroacetone". The Journal of Organic Chemistry. 47 (2): 377–378. doi:10.1021/jo00341a046.
  8. Van Der Puy, M.; Anello, L. G. (1985). "Hexafluoroacetone". Organic Syntheses . 53: 154. doi:10.15227/orgsyn.063.015 .
  9. Lemal, David M. (2004). "Perspective on Fluorocarbon Chemistry". The Journal of Organic Chemistry. 69 (1): 1–11. doi:10.1021/jo0302556. PMID   14703372.
  10. W. J. Middleton; H. D. Carlson (1970). "Hexafluoroacetone imine". Org. Syntheses. 50: 81–3. doi:10.15227/orgsyn.050.0081..