Ilmarë

Last updated • 2 min readFrom Wikipedia, The Free Encyclopedia
Ilmarë
Varda.gif
Hubble Space Telescope image of Varda and its satellite Ilmarë, taken in 2010 and 2011
Discovery
Discovered by Keith S. Noll et al.
Discovery date2009, based on images taken on 2009 April 26
Designations
Designation
Varda I
Pronunciation /ˈɪlmər/
Named after
Ilmarë
(figure by J. R. R. Tolkien) [1]
174567 Varda I Ilmarë
Adjectives Ilmarëan /ɪlməˈrən/
Orbital characteristics [2]
4809±39 km
Eccentricity 0.0181±0.0045 or 0.0247±0.0048
(0.0215±0.0080 adopted)
5.75058±0.00015 d
Inclination 101.0±1.9 or 85.1±1.8
Satellite of Varda
Physical characteristics
Mean diameter
≈356 [3]
326+38
−34
 km
[2] [lower-alpha 1]
Mass ≈2.2×1019 kg [2]
Mean density
1.24+0.50
−0.35
  g/cm3
(system) [2] [lower-alpha 1]
Albedo ≈0.085 [3]
0.166+0.043
−0.033
(assuming same as Varda)
Spectral type
B−V = 0.857±0.061
V−I = 1.266±0.052 [2]
3.097±0.060

    Ilmarë, [lower-alpha 2] or Varda I, full designation 174567 Varda I Ilmarë, is the single known natural satellite of the Kuiper belt object 174567 Varda. It was discovered by Keith Noll et al. in 2009, at a separation of about 0.12 arcsec, using discovery images taken by the Hubble Space Telescope on 26 April 2009, and reported in 2011. [4] At approximately 326 km in diameter (about 45% that of its primary), it is the fourth or fifth-largest known moon of a trans-Neptunian object, after Pluto I Charon, Eris I Dysnomia, Orcus I Vanth and very possibly Haumea I Hiʻiaka. Assuming that Ilmarë has the same albedo and density as Varda, Ilmarë would constitute approximately 8.4% of the system's mass, approximately 2.2×1019 kg.

    Contents

    Name

    Names for Varda and its moon were announced on 2014 January 16. Ilmarë (Quenya: [ˈilmarɛ] ) is a chief of the Maiar and handmaiden to Varda, the queen of the Valar, creator of the stars, and principal goddess of the elves in J. R. R. Tolkien's fictional mythology. [1]

    Characteristics

    Ilmarë and Varda are tightly bound, with a separation of about 13 Varda radii, and a consequently low angular momentum. Along with the high inclination of Varda's orbit, they are similar in this way to the Orcus–Vanth and Salacia–Actaea systems. As of 2015 two mirror orbital solutions are possible with slightly different orbital parameters. The calculated eccentricity is inconsistent with the likely age of the system, suggesting that it might be spurious, but the expected age is also contradicted by suggestions that Varda may not be tidally locked. [2]

    If Ilmarë and Varda have the same albedo, Ilmarë would be 163+19
    −17
     km
    in radius, or approximately 8.4% the volume of Varda. If the two bodies also have the same density, Ilmarë would then have approximately 8.4% the system mass of (2.664±0.064)×1020 kg. If, however, the albedo of Varda is 50% greater than that of Ilmarë, Ilmarë would have a radius of 191+22
    −21
     km
    and the bulk density of the system would be 1.31+0.52
    −0.36
     g/cm3
    . If Ilmarë has a 50%-greater albedo, then its radius would be 137+16
    −15
     km
    and the bulk density would be 1.18+0.47
    −0.33
     g/cm3
    . Because the absolute magnitudes of the two bodies at different wavelengths are similar, it's not likely that their albedos differ by much, so Ilmarë is likely to be in this size range. [2]

    Notes

    1. 1 2 If Varda and Ilmarë have equal albedos and equal densities
    2. Stressed on the first syllable

    Related Research Articles

    <span class="mw-page-title-main">28978 Ixion</span> Plutino

    28978 Ixion (, provisional designation 2001 KX76) is a large trans-Neptunian object and a possible dwarf planet. It is located in the Kuiper belt, a region of icy objects orbiting beyond Neptune in the outer Solar System. Ixion is classified as a plutino, a dynamical class of objects in a 2:3 orbital resonance with Neptune. It was discovered in May 2001 by astronomers of the Deep Ecliptic Survey at the Cerro Tololo Inter-American Observatory, and was announced in July 2001. The object is named after the Greek mythological figure Ixion, who was a king of the Lapiths.

    <span class="mw-page-title-main">20000 Varuna</span> Kuiper belt object

    20000 Varuna (provisional designation 2000 WR106) is a large trans-Neptunian object in the Kuiper belt. It was discovered in November 2000 by American astronomer Robert McMillan during a Spacewatch survey at the Kitt Peak National Observatory. It is named after the Hindu deity Varuna, one of the oldest deities mentioned in the Vedic texts.

    <span class="mw-page-title-main">90482 Orcus</span> Trans-Neptunian planetoid

    Orcus is a large trans-Neptunian object and likely dwarf planet located in the Kuiper belt, with one large moon, Vanth. It has an estimated diameter of 870 to 960 km, comparable to the Inner Solar System dwarf planet Ceres. Orcus had been accepted by many astronomers as a dwarf planet, though as of 2024 that classification remains somewhat controversial. The surface of Orcus is relatively bright with albedo reaching 23 percent, neutral in color, and rich in water ice. The ice is predominantly in crystalline form, which may be related to past cryovolcanic activity. Other compounds like methane or ammonia may also be present on its surface. Orcus was discovered by American astronomers Michael Brown, Chad Trujillo, and David Rabinowitz on 17 February 2004.

    <span class="mw-page-title-main">Haumea</span> Dwarf planet in the Solar System

    Haumea is a dwarf planet located beyond Neptune's orbit. It was discovered in 2004 by a team headed by Mike Brown of Caltech at the Palomar Observatory in the United States and disputably also in 2005 by a team headed by José Luis Ortiz Moreno at the Sierra Nevada Observatory in Spain. On September 17, 2008, it was named after Haumea, the Hawaiian goddess of childbirth, under the expectation by the International Astronomical Union (IAU) that it would prove to be a dwarf planet. Nominal estimates make it the third-largest known trans-Neptunian object, after Eris and Pluto, and approximately the size of Uranus's moon Titania.

    <span class="mw-page-title-main">38628 Huya</span> Trans-Neptunian object

    38628 Huya ( hoo-YAH; provisional designation 2000 EB173) is a binary trans-Neptunian object located in the Kuiper belt, a region of icy objects orbiting beyond Neptune in the outer Solar System. Huya is classified as a plutino, a dynamical class of trans-Neptunian objects with orbits in a 3:2 orbital resonance with Neptune. It was discovered by the Quasar Equatorial Survey Team and was identified by Venezuelan astronomer Ignacio Ferrín in March 2000. It is named after Juyá, the mythological rain god of the Wayuu people native to South America.

    <span class="nowrap">(55565) 2002 AW<sub>197</sub></span> Classical Kuiper belt object

    (55565) 2002 AW197 (provisional designation 2002 AW197) is a classical, non-resonant trans-Neptunian object from the Kuiper belt in the outermost region of the Solar System, also known as a cubewano. With a likely diameter of at least 700 kilometers (430 miles), it is approximately tied with 2002 MS4 and 2013 FY27 (to within measurement uncertainties) as the largest unnamed object in the Solar System. It was discovered at Palomar Observatory in 2002.

    <span class="nowrap">(208996) 2003 AZ<sub>84</sub></span> Plutino

    (208996) 2003 AZ84 (provisional designation 2003 AZ84) is a trans-Neptunian object with a possible moon located in the outer regions of the Solar System. It is approximately 940 kilometers across its longest axis, as it has an elongated shape. It belongs to the plutinos – a group of minor planets named after its largest member Pluto – as it orbits in a 2:3 resonance with Neptune in the Kuiper belt. It is the third-largest known plutino, after Pluto and Orcus. It was discovered on 13 January 2003, by American astronomers Chad Trujillo and Michael Brown during the NEAT survey using the Samuel Oschin telescope at Palomar Observatory.

    <span class="mw-page-title-main">174567 Varda</span> Trans-Neptunian object

    174567 Varda (provisional designation 2003 MW12) is a binary trans-Neptunian planetoid of the resonant hot classical population of the Kuiper belt, located in the outermost region of the Solar System. Its moon, Ilmarë, was discovered in 2009.

    <span class="nowrap">(84922) 2003 VS<sub>2</sub></span> Trans-Neptunian object

    (84922) 2003 VS2 is a trans-Neptunian object discovered by the Near Earth Asteroid Tracking program on 14 November 2003. Like Pluto, it is in a 2:3 orbital resonance with Neptune and is thus a plutino. Analysis of light-curve suggests that it is not a dwarf planet.

    (24835) 1995 SM55 (provisional designation 1995 SM55) is a trans-Neptunian object and member of the Haumea family that resides in the Kuiper belt, located in the outermost region of the Solar System. It was discovered on 19 September 1995, by American astronomer Nichole Danzl of the Spacewatch program at Kitt Peak National Observatory near Tucson, Arizona, in the United States. It measures approximately 200 kilometers in diameter and was the second-brightest known object in the Kuiper belt, after Pluto, until 1996 TO66 was discovered.

    <span class="mw-page-title-main">120347 Salacia</span> Possible dwarf planet

    Salacia is a large trans-Neptunian object in the Kuiper belt, approximately 850 km (530 mi) in diameter. It was discovered on 22 September 2004, by American astronomers Henry Roe, Michael Brown and Kristina Barkume at the Palomar Observatory in California, United States. Salacia orbits the Sun at an average distance that is slightly greater than that of Pluto. It was named after the Roman goddess Salacia and has a single known moon, Actaea.

    <span class="mw-page-title-main">65489 Ceto</span> Minor planet

    65489 Ceto, as a binary also (65489) Ceto/Phorcys, is a binary trans-Neptunian object (TNO) discovered on March 22, 2003, by Chad A. Trujillo and Michael Brown at Palomar. It is named after the sea goddess Ceto from Greek mythology. It came to perihelion in 1989.

    <span class="mw-page-title-main">229762 Gǃkúnǁʼhòmdímà</span> Trans-Neptunian object

    229762 Gǃkúnǁʼhòmdímà (provisional designation 2007 UK126) is a trans-Neptunian object and binary system from the extended scattered disc, located in the outermost region of the Solar System. It was discovered on 19 October 2007 by American astronomers Megan Schwamb, Michael Brown, and David Rabinowitz at the Palomar Observatory in California and measures approximately 600 kilometers (400 miles) in diameter. This medium-sized TNO appears to be representative of a class of mid-sized objects under approximately 1000 km that have not collapsed into fully solid bodies. Its 100-kilometer moon was discovered by Keith Noll, Will Grundy, and colleagues with the Hubble Space Telescope in 2008, and named Gǃòʼé ǃHú.

    <span class="nowrap">(455502) 2003 UZ<sub>413</sub></span>

    (455502) 2003 UZ413 (provisional designation 2003 UZ413) is a trans-Neptunian object (TNO) with an absolute magnitude of 4.38. It is in a 2:3 orbital resonance with Neptune, thus it is classified as a plutino. There are indications it may be dense enough to be a dwarf planet. It was given the minor planet number 455502 on 22 February 2016.

    <span class="mw-page-title-main">Vanth (moon)</span> Moon of 90482 Orcus

    Vanth is a natural satellite or moon of the large trans-Neptunian object 90482 Orcus. It was discovered by Michael Brown and Terry-Ann Suer using images taken by the Hubble Space Telescope on 13 November 2005. The moon has a diameter of 443 km (275 mi), making it about half the size of Orcus and the third-largest moon of a trans-Neptunian object. Vanth is massive enough that it shifts the barycenter of the Orcus–Vanth system outside of Orcus, forming a binary system in which the two bodies revolve around the barycenter, much like the Pluto–Charon system. It is hypothesized that both systems formed similarly, most likely by a giant impact early in the Solar System's history. In contrast to Orcus, Vanth has a darker and slightly redder surface that apparently lacks exposed water ice, resembling primordial Kuiper belt objects.

    <span class="mw-page-title-main">Actaea (moon)</span> Moon of 120347 Salacia

    Actaea, officially (120347)Salacia I Actaea, is a natural satellite of the classical Kuiper belt planetoid 120347 Salacia. Its diameter is estimated 300 km (190 mi), which is approximately one-third the diameter of Salacia; thus, Salacia and Actaea are viewed by William Grundy et al. to be a binary system. Assuming that the following size estimates are correct, Actaea is about the sixth-biggest known moon of a trans-Neptunian object, after Charon (1212 km), Dysnomia (700 km), Vanth (443 km), Ilmarë (326 km) and Hiʻiaka (320 km), but possibly also Hiisi.

    (508869) 2002 VT130, provisional designation 2002 VT130, is a trans-Neptunian object and binary system from the classical Kuiper belt, located in the outermost region of the Solar System. It was discovered by American astronomer Marc Buie at Kitt Peak Observatory on 7 November 2002. The primary measures approximately 324 kilometers (201 miles) in diameter.

    <span class="nowrap">(275809) 2001 QY<sub>297</sub></span>

    (275809) 2001 QY297 is a trans-Neptunian object from the classical Kuiper belt, located in the outermost region of the Solar System. The binary classical Kuiper belt object belongs to the cold population.

    References

    1. 1 2 "174567 Varda (2003 MW12)". Minor Planet Center. Retrieved 5 June 2018.
    2. 1 2 3 4 5 6 7 Grundy, W. M.; Porter, S. B.; Benecchi, S. D.; Roe, H. G.; Noll, K. S.; Trujillo, C. A.; Thirouin, A.; Stansberry, J. A.; Barker, E.; Levison, H. F. (1 September 2015). "The mutual orbit, mass, and density of the large transneptunian binary system Varda and Ilmarë". Icarus. 257: 130–138. arXiv: 1505.00510 . Bibcode:2015Icar..257..130G. doi:10.1016/j.icarus.2015.04.036. S2CID   44546400.
    3. 1 2 Souami, D.; Braga-Ribas, F.; Sicardy, B.; Morgado, B.; Ortiz, J. L.; Desmars, J.; et al. (August 2020). "A multi-chord stellar occultation by the large trans-Neptunian object (174567) Varda". Astronomy & Astrophysics. 643: A125. arXiv: 2008.04818 . Bibcode:2020A&A...643A.125S. doi:10.1051/0004-6361/202038526. S2CID   221095753.
    4. Vilenius, E.; Kiss, C.; Mommert, M.; Müller, T.; Santos-Sanz, P.; Pal, A.; Stansberry, J.; Mueller, M.; Peixinho, N.; Fornasier, S.; Lellouch, E.; Delsanti, A.; Thirouin, A.; Ortiz, J. L.; Duffard, R.; Perna, D.; Szalai, N.; Protopapa, S.; Henry, F.; Hestroffer, D.; Rengel, M.; Dotto, E.; Hartogh, P. (4 May 2012). "'TNOs are Cool': A survey of the trans-Neptunian region". Astronomy & Astrophysics. 541: A94. arXiv: 1204.0697 . Bibcode:2012A&A...541A..94V. doi:10.1051/0004-6361/201118743. S2CID   54222700.