A lightning detector is a device that detects lightning produced by thunderstorms. There are three primary types of detectors: ground-based systems using multiple antennas, mobile systems using a direction and a sense antenna in the same location (often aboard an aircraft), and space-based systems. The first such device was invented in 1894 by Alexander Stepanovich Popov. It was also the first radio receiver in the world.
Ground-based and mobile detectors calculate the direction and severity of lightning from the current location using radio direction-finding techniques along with an analysis of the characteristic frequencies emitted by lightning. Ground-based systems can use triangulation from multiple locations to determine distance, while mobile systems can estimate distance using signal frequency and attenuation. Space-based detectors on satellites can be used to locate lightning range, bearing and intensity by direct observation.
Ground-based lightning detector networks are used by meteorological services like the National Weather Service in the United States, the Meteorological Service of Canada, the European Cooperation for Lightning Detection (EUCLID), the Institute for Ubiquitous Meteorology (Ubimet) and by other organizations like electrical utilities and forest fire prevention services.
Each system used for lightning detection has its own limitations. [2] These include
Lightning detectors and weather radar work together to detect storms. Lightning detectors indicate electrical activity, while weather radar indicates precipitation. Both phenomena are associated with thunderstorms and can help indicate storm strength.
The cloud must develop to a certain vertical extent before lightning is produced, so generally, weather radar will indicate a developing storm before a lightning detector does. It is not always clear from early returns if a shower cloud will develop into a thunderstorm, and weather radar also sometimes suffers from a masking effect by attenuation, where precipitation close to the radar can hide (perhaps more intense) precipitation farther away. Lightning detectors do not suffer from a masking effect and can provide confirmation when a shower cloud has evolved into a thunderstorm.
Lightning may also be located outside the precipitation recorded by radar. The second image shows that this happens when strikes originate in the anvil of the thundercloud (top part blown ahead of the cumulonimbus cloud by upper winds) or on the outside edge of the rain shaft. In both cases, there is still an area of radar echoes somewhere nearby.
Large airliners are more likely to use weather radar than lightning detectors, since weather radar can detect smaller storms that also cause turbulence; however, modern avionics systems often include lightning detection as well, for additional safety.
For smaller aircraft, especially in general aviation, there are two main brands of lightning detectors (often referred to as sferics, short for radio atmospherics): Stormscope, produced originally by Ryan (later B.F. Goodrich) and currently by L-3 Communications, and the Strikefinder, produced by Insight. Strikefinder can detect and properly display IC (intracloud) and CG (cloud to ground) strikes, as well as being able to differentiate between real strikes and signal bounces reflected off the Ionosphere. Lightning detectors are inexpensive and lightweight, making them attractive to owners of light aircraft (particularly of single-engine aircraft, where the aircraft nose is not available for installation of a radome).
Inexpensive portable lightning detectors as well as other single sensor lightning mappers, such as those used on aircraft, have limitations including detection of false signals and poor sensitivity, particularly for intracloud (IC) lightning. Professional-quality portable lightning detectors improve performance in these areas by several techniques which facilitate each other, thus magnifying their effects:
However, since RF signals and light pulses rarely occur simultaneously except when produced by lightning, RF sensors and light pulse sensors can usefully be connected in a "coincidence circuit" which requires both kinds of signals simultaneously in order to produce an output. [3] If such a system is pointed toward a cloud and lightning occurs in that cloud, both signals will be received; the coincidence circuit will produce an output; and the user can be sure the cause was lightning. When a lightning discharge occurs within a cloud at night, the entire cloud appears to illuminate. In daylight these intracloud flashes are rarely visible to the human eye; nevertheless, optical sensors can detect them. In early missions, astronauts used optical sensors to detect lightning in bright, sunlit clouds far below. This application led to the development of the dual signal portable lightning detector which utilizes light flashes as well as the "sferics" signals detected by previous devices.
The improvements described above significantly extend the detector's utility in many areas:
When an RF lightning signal is detected at a single location, one can determine its direction using a crossed-loop magnetic direction finder but it is difficult to determine its distance. Attempts have been made using the amplitude of the signal but this does not work very well because lightning signals greatly vary in their intensity. Thus, using amplitude for distance estimation, a strong flash may appear to be nearby and a weaker signal from the same flash – or from a weaker flash from the same storm cell – appears to be farther away. One can tell where lightning will strike within a mile radius by measuring ionization in the air to improve the accuracy of the prediction.
To understand this aspect of lightning detection one needs to know that a lightning 'flash' generally consists of several strokes, a typical number of strokes from a CG flash is in the range 3 to 6 but some flashes can have more than 10 strokes. [11] : 18 The initial stroke leaves an ionized path from the cloud to ground and subsequent 'return strokes', separated by an interval of about 50 milliseconds, go up that channel. The complete discharge sequence is typically about ½ second in duration while the duration of the individual strokes varies greatly between 100 nanoseconds and a few tens of microseconds. The strokes in a CG flash can be seen at night as a non-periodic sequence of illuminations of the lightning channel. This can also be heard on sophisticated lightning detectors as individual staccato sounds for each stroke, forming a distinctive pattern.
Single sensor lightning detectors have been used on aircraft and while the lightning direction can be determined from a crossed loop sensor, the distance can not be determined reliably because the signal amplitude varies between the individual strokes described above, [11] : 115 and these systems use amplitude to estimate distance. Because the strokes have different amplitudes, these detectors provide a line of dots on the display like spokes on a wheel extending out radially from the hub in the general direction of the lightning source. The dots are at different distances along the line because the strokes have different intensities. These characteristic lines of dots in such sensor displays are called "radial spread". [12] These sensors operate in the very low frequency (VLF) and low frequency (LF) range (below 300 kHz) which provides the strongest lightning signals: those generated by return strokes from the ground. But unless the sensor is close to the flash they do not pick up the weaker signals from IC discharges which have a significant amount of energy in the high frequency (HF) range (up to 30 MHz).
Another issue with VLF lightning receivers is that they pick up reflections from the ionosphere so sometimes can not tell the difference in distance between lightning 100 km away and several hundred km away. At distances of several hundred km the reflected signal (termed the "sky wave") is stronger than the direct signal (termed the "ground wave"). [13]
The Earth-ionosphere waveguide traps electromagnetic VLF- and ELF waves. Electromagnetic pulses transmitted by lightning strikes propagate within that waveguide. The waveguide is dispersive, which means that their group velocity depends on frequency. The difference of the group time delay of a lighting pulse at adjacent frequencies is proportional to the distance between transmitter and receiver. Together with the direction finding method, this allows locating lightning strikes by a single station up to distances of 10000 km from their origin. Moreover, the eigenfrequencies of the Earth-ionospheric waveguide, the Schumann resonances at about 7.5 Hz, are used to determine the global thunderstorm activity. [14]
Because of the difficulty in obtaining distance to lightning with a single sensor, the only current reliable method for positioning lightning is through interconnected networks of spaced sensors covering an area of the Earth's surface using time-of-arrival differences between the sensors and/or crossed-bearings from different sensors. Several such national networks currently operating in the U.S. can provide the position of CG flashes but currently cannot reliably detect and position IC flashes. [15] There are a few small area networks (such as Kennedy Space Center's LDAR network, one of whose sensors is pictured at the top of this article) that have VHF time of arrival systems and can detect and position IC flashes. These are called lightning mapper arrays. They typically cover a circle 30–40 miles in diameter.
Hail is a form of solid precipitation. It is distinct from ice pellets, though the two are often confused. It consists of balls or irregular lumps of ice, each of which is called a hailstone. Ice pellets generally fall in cold weather, while hail growth is greatly inhibited during low surface temperatures.
Radar is a system that uses radio waves to determine the distance (ranging), direction, and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track aircraft, ships, spacecraft, guided missiles, motor vehicles, map weather formations, and terrain.
A tornado is a violently rotating column of air that is in contact with both the surface of the Earth and a cumulonimbus cloud or, in rare cases, the base of a cumulus cloud. It is often referred to as a twister, whirlwind or cyclone, although the word cyclone is used in meteorology to name a weather system with a low-pressure area in the center around which, from an observer looking down toward the surface of the Earth, winds blow counterclockwise in the Northern Hemisphere and clockwise in the Southern. Tornadoes come in many shapes and sizes, and they are often visible in the form of a condensation funnel originating from the base of a cumulonimbus cloud, with a cloud of rotating debris and dust beneath it. Most tornadoes have wind speeds less than 180 kilometers per hour, are about 80 meters across, and travel several kilometers before dissipating. The most extreme tornadoes can attain wind speeds of more than 480 kilometers per hour (300 mph), are more than 3 kilometers (2 mi) in diameter, and stay on the ground for more than 100 km (62 mi).
Lightning is a natural phenomenon formed by electrostatic discharges through the atmosphere between two electrically charged regions, either both in the atmosphere or one in the atmosphere and one on the ground, temporarily neutralizing these in a near-instantaneous release of an average of between 200 megajoules and 7 gigajoules of energy, depending on the type. This discharge may produce a wide range of electromagnetic radiation, from heat created by the rapid movement of electrons, to brilliant flashes of visible light in the form of black-body radiation. Lightning causes thunder, a sound from the shock wave which develops as gases in the vicinity of the discharge experience a sudden increase in pressure. Lightning occurs commonly during thunderstorms as well as other types of energetic weather systems, but volcanic lightning can also occur during volcanic eruptions. Lightning is an atmospheric electrical phenomenon and contributes to the global atmospheric electrical circuit.
A thunderstorm, also known as an electrical storm or a lightning storm, is a storm characterized by the presence of lightning and its acoustic effect on the Earth's atmosphere, known as thunder. Relatively weak thunderstorms are sometimes called thundershowers. Thunderstorms occur in a type of cloud known as a cumulonimbus. They are usually accompanied by strong winds and often produce heavy rain and sometimes snow, sleet, or hail, but some thunderstorms produce little precipitation or no precipitation at all. Thunderstorms may line up in a series or become a rainband, known as a squall line. Strong or severe thunderstorms include some of the most dangerous weather phenomena, including large hail, strong winds, and tornadoes. Some of the most persistent severe thunderstorms, known as supercells, rotate as do cyclones. While most thunderstorms move with the mean wind flow through the layer of the troposphere that they occupy, vertical wind shear sometimes causes a deviation in their course at a right angle to the wind shear direction.
A mesocyclone is a meso-gamma mesoscale region of rotation (vortex), typically around 2 to 6 mi in diameter, most often noticed on radar within thunderstorms. In the northern hemisphere it is usually located in the right rear flank of a supercell, or often on the eastern, or leading, flank of a high-precipitation variety of supercell. The area overlaid by a mesocyclone’s circulation may be several miles (km) wide, but substantially larger than any tornado that may develop within it, and it is within mesocyclones that intense tornadoes form.
The Schumann resonances (SR) are a set of spectrum peaks in the extremely low frequency portion of the Earth's electromagnetic field spectrum. Schumann resonances are global electromagnetic resonances, generated and excited by lightning discharges in the cavity formed by the Earth's surface and the ionosphere.
A squall line, or more accurately a quasi-linear convective system (QLCS), is a line of thunderstorms, often forming along or ahead of a cold front. In the early 20th century, the term was used as a synonym for cold front. Linear thunderstorm structures often contain heavy precipitation, hail, frequent lightning, strong straight-line winds, and occasionally tornadoes or waterspouts. Particularly strong straight-line winds can occur where the linear structure forms into the shape of a bow echo. Tornadoes can occur along waves within a line echo wave pattern (LEWP), where mesoscale low-pressure areas are present. Some bow echoes can grow to become derechos as they move swiftly across a large area. On the back edge of the rainband associated with mature squall lines, a wake low can be present, on very rare occasions associated with a heat burst.
The National Severe Storms Laboratory (NSSL) is a National Oceanic and Atmospheric Administration (NOAA) weather research laboratory under the Office of Oceanic and Atmospheric Research. It is one of seven NOAA Research Laboratories (RLs).
In meteorology, an updraft is a small-scale current of rising air, often within a cloud.
The bounded weak echo region, also known as a BWER or a vault, is a radar signature within a thunderstorm characterized by a local minimum in radar reflectivity at low levels which extends upward into, and is surrounded by, higher reflectivities aloft, forming a kind of dome of weak echoes. This feature is associated with a strong updraft and is almost always found in the inflow region of a thunderstorm: it cannot be seen visually. The BWER has been noted on radar imagery of severe thunderstorms since 1973 and has a lightning detection system equivalent known as a lightning hole.
An air-mass thunderstorm, also called an "ordinary", "single cell", "isolated" or "garden variety" thunderstorm, is a thunderstorm that is generally weak and usually not severe. These storms form in environments where at least some amount of Convective Available Potential Energy (CAPE) is present, but with very low levels of wind shear and helicity. The lifting source, which is a crucial factor in thunderstorm development, is usually the result of uneven heating of the surface, though they can be induced by weather fronts and other low-level boundaries associated with wind convergence. The energy needed for these storms to form comes in the form of insolation, or solar radiation. Air-mass thunderstorms do not move quickly, last no longer than an hour, and have the threats of lightning, as well as showery light, moderate, or heavy rainfall. Heavy rainfall can interfere with microwave transmissions within the atmosphere.
A radio atmospheric signal or sferic is a broadband electromagnetic impulse that occurs as a result of natural atmospheric lightning discharges. Sferics may propagate from their lightning source without major attenuation in the Earth–ionosphere waveguide, and can be received thousands of kilometres from their source. On a time-domain plot, a sferic may appear as a single high-amplitude spike in the time-domain data. On a spectrogram, a sferic appears as a vertical stripe that may extend from a few kHz to several tens of kHz, depending on atmospheric conditions.
Convective storm detection is the meteorological observation, and short-term prediction, of deep moist convection (DMC). DMC describes atmospheric conditions producing single or clusters of large vertical extension clouds ranging from cumulus congestus to cumulonimbus, the latter producing thunderstorms associated with lightning and thunder. Those two types of clouds can produce severe weather at the surface and aloft.
Optical heterodyne detection is a method of extracting information encoded as modulation of the phase, frequency or both of electromagnetic radiation in the wavelength band of visible or infrared light. The light signal is compared with standard or reference light from a "local oscillator" (LO) that would have a fixed offset in frequency and phase from the signal if the latter carried null information. "Heterodyne" signifies more than one frequency, in contrast to the single frequency employed in homodyne detection.
The distribution of lightning, or the incidence of individual strikes, in any particular place is highly dependent on its location, climate, and time of year. Lightning does have an underlying spatial distribution. High quality lightning data has only recently become available, but the data indicates that lightning occurs on average 44±5 times every second over the entire Earth, making a total of about 1.4 billion flashes per year.
The following is a glossary of tornado terms. It includes scientific as well as selected informal terminology.
This glossary of meteorology is a list of terms and concepts relevant to meteorology and atmospheric science, their sub-disciplines, and related fields.
ALDIS is a sensor network in Austria for the detection and localization of lightning discharge occurring during thunderstorms. In addition to the location of the strike point, the associated peak current is also estimated. ALDIS is a member of the pan-European lightning detection project EUCLID.