Linkage principle

Last updated

The linkage principle is a finding of auction theory. It states that auction houses have an incentive to pre-commit to revealing all available information about each lot, positive or negative. The linkage principle is seen in the art market with the tradition of auctioneers hiring art experts to examine each lot and pre-commit to provide a truthful estimate of its value.

Contents

The discovery of the linkage principle was most useful in determining optimal strategy for countries in the process of auctioning off drilling rights (as well as other natural resources, such as logging rights in Canada). An independent assessment of the land in question is now a standard feature of most auctions, even if the seller country may believe that the assessment is likely to lower the value of the land rather than confirm or raise a pre-existing valuation.

Failure to reveal information leads to the winning bidder incurring the discovery costs himself and lowering his maximum bid due to the expenses incurred in acquiring information. If he is not able to get an independent assessment, then his bids will take into account the possibility of downside risk. Both scenarios can be shown to lower the expected revenue of the seller. The expected sale price is raised by lowering these discovery costs of the winning bidder, and instead providing information to all bidders for free.

Use in FCC auction

Speaking of FCC spectrum auctions, Evan Kwerel said, "In the end, the FCC chose an ascending bid mechanism, largely because we believed that providing bidders with more information would likely increase efficiency and, as shown by Paul Milgrom and Robert J. Weber, [1] mitigate the winner's curse. (Kwerel, 2004, p.xvii) [2]

The result alluded to by Kwerel is known as the linkage principle and was developed by Milgrom and Weber (1982). Milgrom (2004) [3] recasts the linkage principle as the 'publicity effect.' It provided a theoretical foundation for the intuition driving the major design choice by the FCC between an ascending bid and sealed bid auction.

Formal derivation

According to Perry and Reny: [4]

The linkage principle has come to be considered one of the fundamental lessons provided by auction theory. The significance and general acceptance of the linkage principle as a guide to auction design, even in contexts beyond single-unit auctions, is highlighted by the recent design of the spectrum auction held by the FCC, which contains an open-auction component. Although the experts agreed that collusion among the bidders (which ultimately did occur; The Economist, May 17, 1997, p. 86) is more easily sustained within an open auction, in the end the faith placed in the linkage principle outweighed this concern and an open auction format was employed. Indeed, according to McMillan (1994), the experts "judged [the negative collusion effect] to be outweighed by the bidders' ability to learn from others' bids in the open auction."

The linkage principle implies that open auctions generally lead to higher expected prices than sealed-bid auctions. As stated by Milgrom and Weber (1982, p.1095),

"One explanation of this inequality is that when bidders are uncertain about their valuations, they can acquire useful information by scrutinizing the bidding behavior of their competitors during the course of an [ascending-bid] auction. That extra information weakens the winner's curse and leads to more aggressive bidding in the [ascending-bid] auction, which accounts for the higher expected price."

The linkage principle also implies that the auctioneer maximizes the expected price by always fully revealing all information it has regarding the object being sold completely. In the words of Milgrom and Weber (1982, p. 1096), "Honesty is the best policy."

In order to provide a statement of the linkage principle, we follow the presentation of Krishna, [5] which notes that the linkage principle "was first set forth and used by Milgrom and Weber (1982)." (Krishna, 2002, p. 111) We begin by defining the necessary concepts and notation required to state the linkage principle. Define a standard auction format to be one in which the high bidder wins. Suppose that each bidder, i ∈ {1, ..., N}, receives a signal Xi regarding the value of the object. We assume the valuation to each bidder depends on its own observed signal and symmetrically upon the unobserved signals of the other bidders (so that the signals of the other bidders can be interchanged without affecting a given bidder's value). More specifically, assume all signals Xi are drawn from the interval [0, ω] and that for all i we can write the value of bidder i as where the function u is symmetric in the last N − 1 components.

We now define other random variables and mappings with respect to bidder 1, but because of the assumed symmetry, they are the same for all bidders. Define random variables to be the largest, second largest, etc., from among . Let denote the distribution of conditional on , i.e., , and let be the associated density. We let

be the expectation of the value to a bidder when the signal he receives is x and the highest signal among the other bidders, Y1 is y. We assume that v is nondecreasing in y and strictly increasing in x and that v(0, 0) = 0.

For each standard auction format A, suppose that the auction has a symmetric and increasing equilibrium βA, which is a mapping from a bidder's observed signal to its bid. Let denote the expected payment by a bidder if he is the winning bidder when he receives a signal x but bids as if their signal were z, i.e., he bids βA(z). Let denote the derivative of WA with respect to its first argument and the derivative with respect to its second argument, evaluated at (x, z).

For specific examples, in a first-price sealed-bid auction, labeled I, where the high bidder wins and pays the amount of their bid, we have and in a second-price auction, labeled II, where the high bidder wins and pays the amount of the second-highest bid, we have

Now we may state:

Linkage Principle. (Krishna, 2002, Proposition 7.1) Let A and B be two standard auctions, each having a symmetric and increasing equilibrium such that
(i) for all x,
(ii) WA(0,0) = 0 = WB(0,0).
Then the expected revenue in A is at least as large as the expected revenue in B.

Proof: The expected payoff of a bidder with signal x who bids βA(z) is

.

In equilibrium, it is optimal to choose z = x and the resulting first-order conditions imply that

which we can rewrite as

Letting

we conclude that

.

By hypothesis (i), the second term is positive, and by hypothesis (ii), which implies Δ(0) = 0, it follows that Δ(x) and Δ′(x) cannot be of different signs, implying that for all x, Δ(x) ≥ 0. Q.E.D.

To use this proposition to rank, for example, the second-price and first-price auctions, we need to assume that the bidders signals are affiliated (see Milgrom and Weber, 1982, Appendix on Affiliation, pp. 1118–1121), which implies that is decreasing and that . Note that . Thus, under the assumption of affiliation, . In addition, WII(0,0) = 0 = WI(0,0), so the Linkage Principle implies that expected revenue from a second-price auction is at least as great as that from a first-price auction.

To use this proposition to show that expected revenue is greater when public information is made available, consider the first-price auction. Let S be a random variable denoting the information available to the seller and suppose a symmetric equilibrium strategy that is increasing in both variables. Then let

be the expected payment of a winning bidder when he receives signal x but bids as if it were z. Assuming S and X1 are affiliated, so that

then

and the linkage principle implies that expected revenue is at least as great when information is revealed as when it is not.

To see that an ascending-bid auction has greater expected revenue than a second-price auction, note that in an ascending-bid auction, the observed points at which other bidders cease to be active provide additional signals that are also affiliated with X1 and so the logic for information revelation increases expected revenue applies.

Although it has been shown that the linkage principle need not hold in more complex auction environments (see Perry and Reny (1999) on the failure of the linkage principle in multi-unit auctions), as argued by Loertscher, Marx, and Wilkening (2013), [6] the intuition provided by the linkage principle for the potential benefits of open over closed auction formats, and the benefits of information revelation generally, will likely continue to influence practical auction design far into the future.

Related Research Articles

<span class="mw-page-title-main">Helmholtz free energy</span> Thermodynamic potential

In thermodynamics, the Helmholtz free energy is a thermodynamic potential that measures the useful work obtainable from a closed thermodynamic system at a constant temperature (isothermal). The change in the Helmholtz energy during a process is equal to the maximum amount of work that the system can perform in a thermodynamic process in which temperature is held constant. At constant temperature, the Helmholtz free energy is minimized at equilibrium.

In the theory of stochastic processes, the Karhunen–Loève theorem, also known as the Kosambi–Karhunen–Loève theorem states that a stochastic process can be represented as an infinite linear combination of orthogonal functions, analogous to a Fourier series representation of a function on a bounded interval. The transformation is also known as Hotelling transform and eigenvector transform, and is closely related to principal component analysis (PCA) technique widely used in image processing and in data analysis in many fields.

<span class="mw-page-title-main">Vickrey auction</span> Auction priced by second-highest sealed bid

A Vickrey auction or sealed-bid second-price auction (SBSPA) is a type of sealed-bid auction. Bidders submit written bids without knowing the bid of the other people in the auction. The highest bidder wins but the price paid is the second-highest bid. This type of auction is strategically similar to an English auction and gives bidders an incentive to bid their true value. The auction was first described academically by Columbia University professor William Vickrey in 1961 though it had been used by stamp collectors since 1893. In 1797 Johann Wolfgang von Goethe sold a manuscript using a sealed-bid, second-price auction.

In statistics, econometrics, epidemiology and related disciplines, the method of instrumental variables (IV) is used to estimate causal relationships when controlled experiments are not feasible or when a treatment is not successfully delivered to every unit in a randomized experiment. Intuitively, IVs are used when an explanatory variable of interest is correlated with the error term (endogenous), in which case ordinary least squares and ANOVA give biased results. A valid instrument induces changes in the explanatory variable but has no independent effect on the dependent variable and is not correlated with the error term, allowing a researcher to uncover the causal effect of the explanatory variable on the dependent variable.

In statistics, omitted-variable bias (OVB) occurs when a statistical model leaves out one or more relevant variables. The bias results in the model attributing the effect of the missing variables to those that were included.

<span class="mw-page-title-main">Common value auction</span>

In common valueauctions the value of the item for sale is identical amongst bidders, but bidders have different information about the item's value. This stands in contrast to a private value auction where each bidder's private valuation of the item is different and independent of peers' valuations.

<span class="mw-page-title-main">Simple linear regression</span> Linear regression model with a single explanatory variable

In statistics, simple linear regression (SLR) is a linear regression model with a single explanatory variable. That is, it concerns two-dimensional sample points with one independent variable and one dependent variable and finds a linear function that, as accurately as possible, predicts the dependent variable values as a function of the independent variable. The adjective simple refers to the fact that the outcome variable is related to a single predictor.

In mathematics and economics, the envelope theorem is a major result about the differentiability properties of the value function of a parameterized optimization problem. As we change parameters of the objective, the envelope theorem shows that, in a certain sense, changes in the optimizer of the objective do not contribute to the change in the objective function. The envelope theorem is an important tool for comparative statics of optimization models.

Difference in differences is a statistical technique used in econometrics and quantitative research in the social sciences that attempts to mimic an experimental research design using observational study data, by studying the differential effect of a treatment on a 'treatment group' versus a 'control group' in a natural experiment. It calculates the effect of a treatment on an outcome by comparing the average change over time in the outcome variable for the treatment group to the average change over time for the control group. Although it is intended to mitigate the effects of extraneous factors and selection bias, depending on how the treatment group is chosen, this method may still be subject to certain biases.

<span class="mw-page-title-main">Auction theory</span> Branch of applied economics regarding the behavior of bidders in auctions

Auction theory is an applied branch of economics which deals with how bidders act in auction markets and researches how the features of auction markets incentivise predictable outcomes. Auction theory is a tool used to inform the design of real-world auctions. Sellers use auction theory to raise higher revenues while allowing buyers to procure at a lower cost. The conference of the price between the buyer and seller is an economic equilibrium. Auction theorists design rules for auctions to address issues which can lead to market failure. The design of these rulesets encourages optimal bidding strategies among a variety of informational settings. The 2020 Nobel Prize for Economics was awarded to Paul R. Milgrom and Robert B. Wilson “for improvements to auction theory and inventions of new auction formats.”

The normal-inverse Gaussian distribution is a continuous probability distribution that is defined as the normal variance-mean mixture where the mixing density is the inverse Gaussian distribution. The NIG distribution was noted by Blaesild in 1977 as a subclass of the generalised hyperbolic distribution discovered by Ole Barndorff-Nielsen. In the next year Barndorff-Nielsen published the NIG in another paper. It was introduced in the mathematical finance literature in 1997.

In estimation theory and decision theory, a Bayes estimator or a Bayes action is an estimator or decision rule that minimizes the posterior expected value of a loss function. Equivalently, it maximizes the posterior expectation of a utility function. An alternative way of formulating an estimator within Bayesian statistics is maximum a posteriori estimation.

<span class="mw-page-title-main">First-price sealed-bid auction</span> Auction where all participants concurrently submit undisclosed bids

A first-price sealed-bid auction (FPSBA) is a common type of auction. It is also known as blind auction. In this type of auction, all bidders simultaneously submit sealed bids so that no bidder knows the bid of any other participant. The highest bidder pays the price that was submitted.

<span class="mw-page-title-main">All-pay auction</span>

In economics and game theory, an all-pay auction is an auction in which every bidder must pay regardless of whether they win the prize, which is awarded to the highest bidder as in a conventional auction. As shown by Riley and Samuelson (1981), equilibrium bidding in an all pay auction with private information is revenue equivalent to bidding in a sealed high bid or open ascending price auction.

<span class="mw-page-title-main">Revenue equivalence</span>

Revenue equivalence is a concept in auction theory that states that given certain conditions, any mechanism that results in the same outcomes also has the same expected revenue.

In statistics, principal component regression (PCR) is a regression analysis technique that is based on principal component analysis (PCA). More specifically, PCR is used for estimating the unknown regression coefficients in a standard linear regression model.

<span class="mw-page-title-main">Market design</span>

Market design is a practical methodology for creation of markets of certain properties, which is partially based on mechanism design. In some markets, prices may be used to induce the desired outcomes — these markets are the study of auction theory. In other markets, prices may not be used — these markets are the study of matching theory.

Head grammar (HG) is a grammar formalism introduced in Carl Pollard (1984) as an extension of the context-free grammar class of grammars. Head grammar is therefore a type of phrase structure grammar, as opposed to a dependency grammar. The class of head grammars is a subset of the linear context-free rewriting systems.

<span class="mw-page-title-main">Symmetry in quantum mechanics</span> Properties underlying modern physics

Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems.

<span class="mw-page-title-main">Jump bidding</span> Auction signalling strategy using seemingly irrational bids

In auction theory, jump bidding is the practice of increasing the current price in an English auction, substantially more than the minimal allowed amount.

References

  1. Milgrom, Paul and Robert Weber (1982). "A Theory of Auctions and Competitive Bidding". Econometrica (Econometrica, Vol. 50, No. 5) 50 (5): 1089–1122. doi : 10.2307/1911865. JSTOR   1911865.
  2. Kwerel, Evan (2004), Foreword in Paul Milgromís Putting Auction Theory to Work, New York: Cambridge University Press, xivvñxxiv.
  3. Milgrom, Paul (2004). Putting Auction Theory to Work. Cambridge University Press. ISBN   0-521-53672-3.
  4. Perry, Motty and Philip J. Reny (1999), On the Failure of the Linkage Principle in Multi-Unit Auctions, Econometrica 67(4), 895-900.
  5. Krishna, Vijay (2002), Auction Theory, New York: Academic Press.
  6. Loertscher, Simon, Leslie M. Marx, and Tom Wilkening (2013), A Long Way Coming: Designing Centralized Markets with Privately Informed Buyers and Sellers, Working Paper, University of Melbourne.