List of hyperaccumulators

Last updated

This article covers known hyperaccumulators, accumulators or species tolerant to the following: Aluminium (Al), Silver (Ag), Arsenic (As), Beryllium (Be), Chromium (Cr), Copper (Cu), Manganese (Mn), Mercury (Hg), Molybdenum (Mo), Naphthalene, Lead (Pb), Selenium (Se) and Zinc (Zn).

See also:

Hyperaccumulators table – 1

hyperaccumulators and contaminants : Al, Ag, As, Be, Cr, Cu, Mn, Hg, Mo, naphthalene, Pb, Se, Zn – accumulation rates
ContaminantAccumulation rates (in mg/kg dry weight)Binomial nameEnglish nameH-Hyperaccumulator or A-Accumulator P-Precipitator T-TolerantNotesSources
Al A- Agrostis castellana highland bentgrassAs(A), Mn(A), Pb(A), Zn(A)Origin: Portugal. [1] :898
Al 1000 Hordeum vulgare Barley 25 records of plants. [1] :891 [2]
Al Hydrangea spp. Hydrangea (a.k.a. Hortensia)
Al Aluminium concentrations in young leaves, mature leaves, old leaves, and roots were found to be 8.0, 9.2, 14.4, and 10.1 mg g1, respectively. [3] Melastoma malabathricum L.Blue Tongue, or Native Lassiandra P competes with Al and reduces uptake. [4]
Al Solidago hispida (Solidago canadensis L.)Hairy GoldenrodOrigin Canada. [1] :891 [2]
Al 100 Vicia faba Horse Bean [1] :891 [2]
Ag 10-1200 Salix miyabeana WillowAg(T)Seemed able to adapt to high AgNO3 concentrations on a long timeline [5]
Ag Brassica napus Rapeseed plantCr, Hg, Pb, Se, ZnPhytoextraction [1] :20 [6]
Ag Salix spp. Osier spp.Cr, Hg, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products; [1] :19 Cd, Pb, U, Zn (S. viminalix); [7] Potassium ferrocyanide (S. babylonica L.) [8] Phytoextraction. Perchlorate (wetland halophytes) [1] :19
Ag Amanita strobiliformis European Pine Cone LepidellaAg(H)Macrofungi, Basidiomycete. Known from Europe, prefers calcareous areas [9]
Ag 10-1200 Brassica juncea Indian MustardAg(H)Can form alloys of silver-gold-copper [10]
As 100 Agrostis capillaris L.Common Bent Grass, Browntop. (= A. tenuris)Al(A), Mn(A), Pb(A), Zn(A) [1] :891
As H- Agrostis castellanaHighland Bent GrassAl(A), Mn(A), Pb(A), Zn(A)Origin Portugal. [1] :898
As 1000Agrostis tenerrima Trin.Colonial bentgrass4 records of plants [1] :891 [11]
As 2-1300 Cyanoboletus pulverulentus Ink Stain Boletecontains dimethylarsinic acidEurope [12]
As 27,000 (fronds) [13] Pteris vittata L.Ladder brake fern or Chinese brake fern26% of As in the soil removed after 20 weeks' plantation, about 90% As accumulated in fronds. [14] Root extracts reduce arsenate to arsenite. [15]
As 100-7000 Sarcosphaera coronaria pink crown, violet crown-cup, or violet star cupAs(H) Ectomycorrhizal ascomycete, known from Europe [16] [17]
Be No reports found for accumulation [1] :891
Cr Azolla spp.mosquito fern, duckweed fern, fairy moss, water fern [1] :891 [18]
CrH- Bacopa monnieri Smooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiolaCd(H), Cu(H), Hg(A), Pb(A)Origin India. Aquatic emergent species. [1] :898 [19]
Cr Brassica juncea L. Indian mustard Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H)Cultivated in agriculture. [1] :19,898 [20]
Cr Brassica napus Rapeseed plantAg, Hg, Pb, Se, ZnPhytoextraction [6] [1] :19
CrA- Vallisneria americana Tape GrassCd(H), Pb(H)Native to Europe and North Africa. Widely cultivated in the aquarium trade. [1] :898
Cr1000 Dicoma niccolifera35 records of plants [1] :891
Cr roots naturally absorb pollutants, some organic compounds believed to be carcinogenic, [21] in concentrations 10,000 times that in the surrounding water. [22] Eichhornia crassipes Water Hyacinth Cd(H), Cu(A), Hg(H), [21] Pb(H), [21] Zn(A). Also Cs, Sr, U, [21] [23] and pesticides. [24] Pantropical/Subtropical. Plants sprayed with 2,4-D may accumulate lethal doses of nitrates. [25] 'The troublesome weed' – hence an excellent source of bioenergy. [21] [1] :898
Cr Helianthus annuus SunflowerPhytoextraction and rhizofiltration [1] :19,898
CrA- Hydrilla verticillata HydrillaCd(H), Hg(H), Pb(H) [1] :898
Cr Medicago sativa Alfalfa [1] :891 [26]
Cr Pistia stratiotes Water lettuceCd(T), Hg(H), Cr(H), Cu(T) [1] :891,898 [27]
Cr Salix spp. Osier spp.Ag, Hg, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products; [1] :19 Cd, Pb, U, Zn (S. viminalix); [7] Potassium ferrocyanide (S. babylonica L.) [8] Phytoextraction. Perchlorate (wetland halophytes) [1] :19
Cr Salvinia molesta Kariba weeds or water fernsCr(H), Ni(H), Pb(H), Zn(A) [1] :891,898 [28]
Cr Spirodela polyrhiza Giant Duckweed Cd(H), Ni(H), Pb(H), Zn(A)Native to North America. [1] :891,898 [28]
Cr 100 Jamesbrittenia fodina Hilliard
Sutera fodina Wild
[1] :891 [29] [30]
Cr A- Thlaspi caerulescens Alpine Pennycress, Alpine PennygrassCd(H), Co(H), Cu(H), Mo, Ni(H), Pb(H), Zn(H)Phytoextraction. T. caerulescens may acidify its rhizosphere, which would affect metal uptake by increasing available metals [31] [1] :19,891,898 [32] [33] [34]
Cu9000 Aeollanthus biformifolius [35]
Cu Athyrium yokoscense (Japanese false spleenwort?)Cd(A), Pb(H), Zn(H)Origin Japan. [1] :898
CuA- Azolla filiculoides Pacific mosquitofernNi(A), Pb(A), Mn(A)Origin Africa. Floating plant. [1] :898
CuH- Bacopa monnieri Smooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiolaCd(H), Cr(H), Hg(A), Pb(A)Origin India. Aquatic emergent species. [1] :898 [19]
Cu Brassica juncea L. Indian mustard Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H)cultivated [1] :19,898 [20]
CuH- Vallisneria americana Tape GrassCd(H), Cr(A), Pb(H)Native to Europe and North Africa. Widely cultivated in the aquarium trade. [1] :898
Cu Eichhornia crassipes Water Hyacinth Cd(H), Cr(A), Hg(H), Pb(H), Zn(A), Also Cs, Sr, U, [23] and pesticides. [24] Pantropical/Subtropical, 'the troublesome weed'. [1] :898
Cu1000 Haumaniastrum robertii
( Lamiaceae )
Copper flower27 records of plants. Origin Africa. This species' phanerogam has the highest cobalt content. Its distribution could be governed by cobalt rather than copper. [36] [1] :891 [33]
Cu Helianthus annuus Sunflower Phytoextraction with rhizofiltration [1] :898 [33]
Cu1000 Larrea tridentata Creosote Bush67 records of plants. Origin U.S. [1] :891 [33]
CuH- Lemna minor Duckweed Pb(H), Cd(H), Zn(A)Native to North America and widespread worldwide. [1] :898
Cu Ocimum centraliafricanum Copper plantCu(T), Ni(T)Origin Southern Africa [37]
CuT- Pistia stratiotes Water LettuceCd(T), Hg(H), Cr(H)Pantropical. Origin South U.S.A. Aquatic herb. [1] :898
Cu Thlaspi caerulescens Alpine pennycress, Alpine Pennycress, Alpine PennygrassCd(H), Cr(A), Co(H), Mo, Ni(H), Pb(H), Zn(H)Phytoextraction. Cu noticeably limits its growth. [34] [1] :19,891,898 [31] [32] [33] [34]
MnA- Agrostis castellanaHighland Bent GrassAl(A), As(A), Pb(A), Zn(A)Origin Portugal. [1] :898
Mn Azolla filiculoides Pacific mosquitofernCu(A), Ni(A), Pb(A)Origin Africa. Floating plant. [1] :898
Mn Brassica juncea L. Indian mustard [1] :19 [20]
Mn23,000 (maximum) 11,000 (average) leaf Chengiopanax sciadophylloides (Franch. & Sav.) C.B.Shang & J.Y.Huang koshiabura Origin Japan. Forest tree. [38]
Mn Helianthus annuus Sunflower Phytoextraction and rhizofiltration [1] :19
Mn1000 Macadamia neurophylla
(now Virotia neurophylla (Guillaumin) P. H. Weston & A. R. Mast)
28 records of plants [1] :891 [39]
Mn200 [1] :891
HgA- Bacopa monnieri Smooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiolaCd(H), Cr(H), Cu(H), Hg(A), Pb(A)Origin India. Aquatic emergent species. [1] :898 [19]
Hg Brassica napus Rapeseed plantAg, Cr, Pb, Se, ZnPhytoextraction [1] :19 [6]
Hg Eichhornia crassipes Water Hyacinth Cd(H), Cr(A), Cu(A), Pb(H), Zn(A). Also Cs, Sr, U, [23] and pesticides. [24] Pantropical/Subtropical, 'the troublesome weed'. [1] :898
HgH- Hydrilla verticillata HydrillaCd(H), Cr(A), Pb(H) [1] :898
Hg1000 Pistia stratiotes Water lettuceCd(T), Cr(H), Cu(T)35 records of plants [1] :891,898 [33] [40] [ full citation needed ]
Hg Salix spp. Osier spp.Ag, Cr, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products; [1] :19 Cd, Pb, U, Zn (S. viminalix); [7] Potassium ferrocyanide (S. babylonica L.) [8] Phytoextraction. Perchlorate (wetland halophytes) [1] :19
Mo1500 Thlaspi caerulescens ( Brassicaceae )Alpine pennycressCd(H), Cr(A), Co(H), Cu(H), Ni(H), Pb(H), Zn(H)phytoextraction [1] :19,891,898 [31] [32] [33] [34]
Naphthalene Festuca arundinacea Tall FescueIncreases catabolic genes and the mineralization of naphthalene. [41]
Naphthalene Trifolium hirtum Pink clover, rose cloverDecreases catabolic genes and the mineralization of naphthalene. [41]
PbA- Agrostis castellana'Highland Bent Grass Al(A), As(H), Mn(A), Zn(A)Origin Portugal. [1] :898
Pb Ambrosia artemisiifolia Ragweed [6]
Pb Armeria maritima Seapink Thrift [6]
Pb Athyrium yokoscense (Japanese false spleenwort?)Cd(A), Cu(H), Zn(H)Origin Japan. [1] :898
PbA- Azolla filiculoides Pacific mosquitofernCu(A), Ni(A), Mn(A)Origin Africa. Floating plant. [1] :898
PbA- Bacopa monnieri Smooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiolaCd(H), Cr(H), Cu(H), Hg(A)Origin India. Aquatic emergent species. [1] :898 [19]
PbH- Brassica juncea Indian mustard Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H)79 recorded plants. Phytoextraction [1] :19,891,898 [6] [20] [31] [33] [34] [42]
Pb Brassica napus Rapeseed plantAg, Cr, Hg, Se, ZnPhytoextraction [1] :19 [6]
Pb Brassica oleracea Ornamental Kale and Cabbage, Broccoli [6]
PbH- Vallisneria americana Tape GrassCd(H), Cr(A), Cu(H)Native to Europe and North Africa. Widely cultivated in the aquarium trade. [1] :898
Pb Eichhornia crassipes Water Hyacinth Cd(H), Cr(A), Cu(A), Hg(H), Zn(A). Also Cs, Sr, U, [23] and pesticides. [24] Pantropical/Subtropical, 'the troublesome weed'. [1] :898
Pb Festuca ovina Blue Sheep Fescue [6]
Pb Ipomoea trifida Morning glory Phytoextraction and rhizofiltration [1] :19,898 [6] [7] [42]
PbH- Hydrilla verticillata HydrillaCd(H), Cr(A), Hg(H) [1] :898
PbH- Lemna minor Duckweed Cd(H), Cu(H), Zn(H)Native to North America and widespread worldwide. [1] :898
Pb Salix viminalis Common Osier Cd, U, Zn, [7] Ag, Cr, Hg, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products (S. spp.); [1] :19 Potassium ferrocyanide (S. babylonica L.) [8] Phytoextraction. Perchlorate (wetland halophytes) [7]
PbH- Salvinia molesta Kariba weeds or water fernsCr(H), Ni(H), Pb(H), Zn(A)Origin India. [1] :898
Pb Spirodela polyrhiza Giant Duckweed Cd(H), Cr(H), Ni(H), Zn(A)Native to North America. [1] :891,898 [28]
Pb Thlaspi caerulescens ( Brassicaceae )Alpine pennycress, Alpine pennygrassCd(H), Cr(A), Co(H), Cu(H), Mo(H), Ni(H), Zn(H)Phytoextraction. [1] :19,891,898 [31] [32] [33] [34]
Pb Thlaspi rotundifoliumRound-leaved Pennycress [6]
Pb Triticum aestivum Common Wheat [6]
Se.012-20 Amanita muscaria Fly agaric Cap contains higher concentrations than stalks [43]
Se Brassica juncea Indian mustard Rhizosphere bacteria enhance accumulation. [44] [1] :19
Se Brassica napus Rapeseed plantAg, Cr, Hg, Pb, ZnPhytoextraction. [1] :19 [6]
SeLow rates of selenium volatilization from selenate-supplied Muskgrass (10-fold less than from selenite) may be due to a major rate limitation in the reduction of selenate to organic forms of selenium in Muskgrass. Chara canescens Desv. & LoisMuskgrassMuskgrass treated with selenite contains 91% of the total Se in organic forms (selenoethers and diselenides), compared with 47% in Muskgrass treated with selenate. [45] 1.9% of the total Se input is accumulated in its tissues; 0.5% is removed via biological volatilization. [46] [47]
Se Bassia scoparia
(a.k.a. Kochia scoparia )
burningbush, ragweed, summer cypress, fireball, belvedere and Mexican firebrush, Mexican fireweedU, [7] Cr, Pb, Hg, Ag, Zn Perchlorate (wetland halophytes). Phytoextraction. [1] :19,898
Se Salix spp. Osier spp.Ag, Cr, Hg, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products; [1] :19 Cd, Pb, U, Zn (S. viminalis); [7] Potassium ferrocyanide (S. babylonica L.) [8] Phytoextraction. Perchlorate (wetland halophytes). [1] :19
ZnA- Agrostis castellanaHighland Bent GrassAl(A), As(H), Mn(A), Pb(A)Origin Portugal. [1] :898
Zn Athyrium yokoscense (Japanese false spleenwort?)Cd(A), Cu(H), Pb(H)Origin Japan. [1] :898
Zn Brassicaceae Mustards, mustard flowers, crucifers or cabbage familyCd(H), Cs(H), Ni(H), Sr(H)Phytoextraction [1] :19
Zn Brassica juncea L. Indian mustard Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A).Larvae of Pieris brassicae do not even sample its high-Zn leaves. (Pollard and Baker, 1997) [1] :19,898 [20]
Zn Brassica napus Rapeseed plantAg, Cr, Hg, Pb, SePhytoextraction [1] :19 [6]
Zn Helianthus annuus Sunflower Phytoextraction and rhizofiltration [1] :19 [7]
Zn Eichhornia crassipes Water Hyacinth Cd(H), Cr(A), Cu(A), Hg(H), Pb(H). Also Cs, Sr, U, [23] and pesticides. [24] Pantropical/Subtropical, 'the troublesome weed'. [1] :898
Zn Salix viminalis Common Osier Ag, Cr, Hg, Se, petroleum hydrocarbons, organic solvents, MTBE, TCE and by-products; [1] :19 Cd, Pb, U (S. viminalis); [7] Potassium ferrocyanide (S. babylonica L.) [8] Phytoextraction. Perchlorate (wetland halophytes). [7]
ZnA- Salvinia molesta Kariba weeds or water fernsCr(H), Ni(H), Pb(H), Zn(A)Origin India. [1] :898
Zn1400 Silene vulgaris (Moench) Garcke ( Caryophyllaceae ) Bladder campion Ernst et al. (1990)
Zn Spirodela polyrhiza Giant Duckweed Cd(H), Cr(H), Ni(H), Pb(H)Native to North America. [1] :891,898 [28]
ZnH-10,000 Thlaspi caerulescens ( Brassicaceae )Alpine pennycressCd(H), Cr(A), Co(H), Cu(H), Mo, Ni(H), Pb(H)48 records of plants. May acidify its own rhizosphere, which would facilitate absorption by solubilization of the metal [31] [1] :19,891,898 [32] [33] [34] [42]
Zn Trifolium pratense Red CloverNonmetal accumulator.Its rhizosphere is denser in bacteria than that of Thlaspi caerulescens , but T. caerulescens has relatively more metal-resistant bacteria. [31]

Cs-137 activity was much smaller in leaves of larch and sycamore maple than of spruce: spruce > larch > sycamore maple.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 McCutcheon, Steven C.; Schnoor, Jerald L. (2003). Phytoremediation: Transformation and Control of Contaminants. Environmental Science and Technology. Wiley. ISBN   978-0-471-39435-8.
  2. 1 2 3 Grauer, U. E.; Horst, W. J. (September 1990). "Effect of pH and nitrogen source on aluminium tolerance of rye (Secale cereale L.) and yellow lupin (Lupinus luteus L.)". Plant and Soil. 127 (1). Springer: 13–21. Bibcode:1990PlSoi.127...13G. doi:10.1007/BF00010832. JSTOR   42938620. S2CID   31201518.
  3. Toshihiro Watanabe; Mitsuru Osaki; Teruhiko Yoshihara; Toshiaki Tadano (April 1998). "Distribution and chemical speciation of aluminum in the Al accumulator plant, Melastoma malabathricum L.". Plant and Soil. 201 (2): 165–173. doi:10.1023/A:1004341415878. S2CID   8649008.
  4. Shoellhorn, Rick; Richardson, Alexis A. (2005). "Warm Climate Production Guidelines for Japanese Hydrangeas". EDIS. 2005 (4). Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. doi: 10.32473/edis-ep177-2005 . ENH910/EP177.
  5. Nissim, Werther G.; Frederic E., Pitre; Kadri, Hafssa; Desjardins, Dominic; Labrecque, Michel (2014). "Early Response Of Willow To Increasing Silver Concentration Exposure". International Journal of Phytoremediation. 16 (4): 660–670. Bibcode:2014IJPhy..16..660G. doi:10.1080/15226514.2013.856840. PMID   24933876. S2CID   1000307.
  6. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Fiegl, Joseph L.; McDonnell, Bryan P.; Kostel, Jill A.; Finster, Mary E.; Gray, Kimberly A. "A Resource Guide: The Phytoremediation of Lead to Urban, Residential Soils". Civil and Environmental Engineering. Evanston, IL: McCormick School of Engineering, Northwestern University. Archived from the original on 24 February 2011.
  7. 1 2 3 4 5 6 7 8 9 10 11 Schmidt, Ulrich (2003). "Enhancing Phytoextraction: The Effect of Chemical Soil Manipulation on Mobility, Plant Accumulation, and Leaching of Heavy Metals". Plant and Soil Interaction. Journal of Environmental Quality. 32 (6): 1939–54. doi:10.2134/jeq2003.1939. PMID   14674516.
  8. 1 2 3 4 5 6 Yu, Xiao-Zhang; Zhou, Pu-Hua; Yang, Yong-Miao (July 2006). "The potential for phytoremediation of iron cyanide complex by willows". Ecotoxicology. 15 (5): 461–7. Bibcode:2006Ecotx..15..461Y. doi:10.1007/s10646-006-0081-5. PMID   16703454. S2CID   5930089.
  9. Borovička, Jan; Řanda, Zdeněk; Jelínek, Emil; Kotrba, Pavel; Dunn, Colin E. (November 2007). "Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella". Mycological Research. 111 (11): 1339–1344. doi:10.1016/j.mycres.2007.08.015. PMID   18023163.
  10. Haverkamp, Richard G.; Marshall, Aaron T.; van Agterveld, Dimitri (2007). "Pick your carats: nanoparticles of gold–silver–copper alloy produced in vivo". Journal of Nanoparticle Research. 9 (4): 697–700. Bibcode:2007JNR.....9..697H. doi:10.1007/s11051-006-9198-y. S2CID   56368453.
  11. Porter, E. K.; Peterson, P. J. (November 1975). "Arsenic accumulation by plants on mine waste (United Kingdom)". Science of the Total Environment. 4 (4). Elsevier: 365–371. Bibcode:1975ScTEn...4..365P. doi:10.1016/0048-9697(75)90028-5.
  12. Braeuer, Simone; Goessler, Walter; Kameník, Jan; Konvalinková, Tereza; Žigová, Anna; Borovička, Jan (2018). "Arsenic hyperaccumulation and speciation in the edible ink stain bolete (Cyanoboletus pulverulentus)". Food Chemistry. 242: 225–231. doi:10.1016/j.foodchem.2017.09.038. PMC   6118325 . PMID   29037683.
  13. Junru Wang; Fang-Jie Zhao; Andrew A. Meharg; Andrea Raab; Joerg Feldmann; Steve P. McGrath (November 2002). "Mechanisms of Arsenic Hyperaccumulation in Pteris vittata. Uptake Kinetics, Interactions with Phosphate, and Arsenic Speciation". Plant Physiol. 130 (3): 1552–61. doi: 10.1104/pp.008185 . PMC   166674 . PMID   12428020.
  14. Tu, Cong; Ma, Lena Q.; Bondada, Bhaskhar (2002). "Arsenic Accumulation in the Hyperaccumulator Chinese Brake and Its Utilization Potential for Phytoremediation". Journal of Environmental Quality. 31 (5): 1671–5. Bibcode:2002JEnvQ..31.1671T. doi:10.2134/jeq2002.1671. PMID   12371185.
  15. Duan, Gui-Lan; Zhu, Yong-Guan; Tong, Yi-Ping; Cai, Chao; Kneer, Ralf (2005). "Characterization of Arsenate Reductase in the Extract of Roots and Fronds of Chinese Brake Fern, an Arsenic Hyperaccumulator". Plant Physiology. 138 (1): 461–9. doi: 10.1104/pp.104.057422 . PMC   1104199 . PMID   15834011.
  16. Stijve, Tjakko; Vellinga, Else C.; Herrmann, André (1990). "Arsenic accumulation in some higher fungi". Persoonia - Molecular Phylogeny and Evolution of Fungi. 14 (2): 161–166.
  17. Borovička, Jan (2004). "Nová lokalita baňky velkokališné" [New location for Sarcosphaera coronaria]. Mykologický sborník (in Czech). 81 (3). Prague: Czech Mycological Society: 97–99.
  18. Priel, A. "Purification of industrial wastewater with the Azolla fern". World Water and Environmental Engineering. 18.
  19. 1 2 3 4 Gupta, Manisha; Sinha, Sarita; Chandra, Prakash (1994). "Uptake and toxicity of metals in Scirpus lacustris L. and Bacopa monnieri l.". Journal of Environmental Science and Health, Part A. 29 (10). Taylor & Francis: 2185–2202. Bibcode:1994JESHA..29.2185G. doi:10.1080/10934529409376173.
  20. 1 2 3 4 5 Bennett, Lindsay E.; Burkhead, Jason L.; Hale, Kerry L.; Terry, Norman; Pilon, Marinus; Pilon-Smits, Elizabeth A. H. (March 2003). "Analysis of Transgenic Indian Mustard Plants for Phytoremediation of Metal-Contaminated Mine Tailings". Journal of Environmental Quality. 32 (2): 432–440. Bibcode:2003JEnvQ..32..432B. doi:10.2134/jeq2003.4320. PMID   12708665.
  21. 1 2 3 4 5 Duke, James A. (1983). "Handbook of Energy Crops". NewCROP. West Lafayette, IN: Center for New Crops and Plant Products, Purdue University. Retrieved 3 January 2023.
  22. "Biology Briefs". BioScience. 26 (3): 223–224. 1976. doi:10.2307/1297259. JSTOR   1297259.
  23. 1 2 3 4 5 "Phytoremediation of Radionuclides". Colorado State University. Archived from the original on 11 January 2012.
  24. 1 2 3 4 5 Lan, Jun-Kang (March 2004). "Recent developments of phytoremediation". Journal of Geological. Hazards and Environmental Preservation. 15 (1): 46–51. Archived from the original on 20 May 2011.
  25. Göhl, Bo; International Foundation for Science (1981). Tropical feeds. Feeds information summaries and nutritive values. FAO Animal Production and Health. Vol. 12. Stockholm: Food and Agriculture Organization of the United Nations.
  26. Kirk J., Tiemann; Gardea-Torresdey, Jorge L.; Gamez, Gerardo; Dokken, Kenneth M. (May 1998). "Interference studies for multi-metal binding by Medicago sativa (alfalfa)" (PDF). Proceedings of the 1998 Conference on Hazardous Waste Research. Metals. Conference on Hazardous Waste Research. Snowbird, UT. pp. 63–75.
  27. Sen, A. K.; Mondal, N. G.; Mandal, S. (1 January 1987). "Studies of Uptake and Toxic Effects of Cr(VI) on Pistia stratiotes". Water Science and Technology. 19 (1–2). International Water Association: 119–127. doi:10.2166/wst.1987.0194.
  28. 1 2 3 4 Srivastav, R. K.; Gupta, S. K.; Nigam, K. D. P.; Vasudevan, P. (July 1994). "Treatment of chromium and nickel in wastewater by using aquatic plants". Water Research. 28 (7): 1631–1638. Bibcode:1994WatRe..28.1631S. doi:10.1016/0043-1354(94)90231-3.
  29. Wild, Hiram (1974). "Indigenous plants and chromium in Rhodesia". Kirkia. 9 (2). Zimbabwe's National Herbarium and Botanic Garden: 233–241. JSTOR   23502019.
  30. Brooks, Robert R.; Yang, Xing-hua (August 1984). "Elemental Levels and Relationships in the Endemic Serpentine Flora of the Great Dyke, Zimbabwe and Their Significance as Controlling Factors for the Flora". Taxon. 33 (3). Wiley: 392. doi:10.2307/1220976. JSTOR   1220976.
  31. 1 2 3 4 5 6 7 Delorme, Thierry A.; Gagliardi, Joel V.; Angle, J. Scott; Chaney, Rufus L. (2001). "Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations". Canadian Journal of Microbiology. 47 (8). Canadian Science Publishing: 773–776. doi:10.1139/w01-067. PMID   11575505.
  32. 1 2 3 4 5 Majeti Narasimha Vara Prasad (2005). "Nickelophilous plants and their significance in phytotechnologies". Brazilian Journal of Plant Physiology. 17 (1): 113–128. doi: 10.1590/s1677-04202005000100010 .
  33. 1 2 3 4 5 6 7 8 9 10 Baker, Alan J. M.; Brooks, Robert R. (1989). "Terrestrial higher plants which hyperaccumulate metallic elements: A review of their distribution, ecology and phytochemistry". Biorecovery. 1: 81–126. ISSN   0269-7572.
  34. 1 2 3 4 5 6 7 Lombi, Enzo; Zhao, Fang-Jie; Dunham, Sarah J.; McGrath, Steve P. (2001). "Phytoremediation of Heavy Metal, Contaminated Soils, Natural Hyperaccumulation versus Chemically Enhanced Phytoextraction". Journal of Environmental Quality. 30 (6): 1919–1926. Bibcode:2001JEnvQ..30.1919L. doi:10.2134/jeq2001.1919. PMID   11789997.
  35. Morrison, Richard S.; Brooks, Robert R.; Reeves, Roger D.; Malaisse, François (1979). "Copper and cobalt uptake by metallophytes from Zaïre" (PDF). Plant and Soil. 53 (4). Kluwer: 535–539. Bibcode:1979PlSoi..53..535M. doi:10.1007/bf02140724. hdl:2268/266081. S2CID   42737843.
  36. Brooks, Robert R. (1977). "Copper and cobalt uptake by Haumaniustrum species". Plant and Soil. 48 (2): 541–544. Bibcode:1977PlSoi..48..541B. doi:10.1007/BF02187261. S2CID   12181174.
  37. Howard-Williams, Clive (1970). "The ecology of Becium homblei in Central Africa with special reference to metalliferous soils". Journal of Ecology. 58 (3): 745–763. Bibcode:1970JEcol..58..745H. doi:10.2307/2258533. JSTOR   2258533.
  38. Mizuno, Takafumi; Emori, Kanae; Ito, Shin-ichiro (2013). "Manganese hyperaccumulation from non-contaminated soil in Chengiopanax sciadophylloides Franch. and Sav. and its correlation with calcium accumulation". Soil Science and Plant Nutrition. 59 (4): 591–602. Bibcode:2013SSPN...59..591M. doi: 10.1080/00380768.2013.807213 . S2CID   97458219.
  39. Baker, Alan J. M.; Walker, Philip L. (1990). "Ecophysiology of Metal Uptake by Tolerant Plants". In Shaw, A. Jonathan (ed.). Heavy metal tolerance in plants: evolutionary aspects. Boca Raton, FL.: CRC Press. pp. 155–177. ISBN   0-8493-6852-9.
  40. Atri 1983
  41. 1 2 Siciliano, Steven D.; Germida, James J.; Banks, Kathy; Greer, Charles W. (January 2003). "Changes in Microbial Community Composition and Function during a Polyaromatic Hydrocarbon Phytoremediation Field Trial". Applied and Environmental Microbiology. 69 (1): 483–9. Bibcode:2003ApEnM..69..483S. doi:10.1128/AEM.69.1.483-489.2003. PMC   152433 . PMID   12514031.
  42. 1 2 3 Phytotechnology Technical and Regulatory Guidance and Decision Trees, Revised (PDF) (Technical report). Interstate Technology and Regulatory Council. 2009. PHYTO-3.
  43. Stijve, Tjakko (September 1977). "Selenium content of mushrooms". Zeitschrift für Lebensmittel-Untersuchung und -Forschung A. 164 (3): 201–3. doi:10.1007/BF01263031. PMID   562040. S2CID   31058569.
  44. de Souza, Mark P.; Chu, Dara; Zhao, May; Zayed, Adel M.; Ruzin, Steven E.; Schichnes, Denise; Terry, Norman (1999). "Rhizosphere Bacteria Enhance Selenium Accumulation and Volatilization by Indian mustard". Plant Physiology. 119 (2): 565–574. doi:10.1104/pp.119.2.565. PMC   32133 . PMID   9952452.
  45. X-ray absorption spectroscopy speciation analysis.
  46. Average Se concentration of 22 μg/L supplied over a 24-d experimental period.
  47. Z.-Q. Lin; M.P. de Souza; I. J. Pickering; N. Terry (2002). "Evaluation of the Macroalga, Muskgrass, for the Phytoremediation of Selenium-Contaminated Agricultural Drainage Water by Microcosms". Journal of Environmental Quality. 31 (6): 2104–10. Bibcode:2002JEnvQ..31.2104L. doi:10.2134/jeq2002.2104. PMID   12469862.