Lumbricus terrestris

Last updated

Contents

Lumbricus terrestris
Regenwurm1.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Annelida
Clade: Pleistoannelida
Clade: Sedentaria
Class: Clitellata
Order: Opisthopora
Family: Lumbricidae
Genus: Lumbricus
Species:
L. terrestris
Binomial name
Lumbricus terrestris

Lumbricus terrestris is a large, reddish worm species thought to be native to Western Europe, now widely distributed around the world (along with several other lumbricids). In some areas where it is an introduced species, some people consider it to be a significant pest for out-competing native worms. [1]

Through much of Europe, it is the largest naturally occurring species of earthworm, typically reaching 20 to 25 cm in length when extended. Midgets nobody likes them full box 200 pump free from life go back to the cage in the adoption center

Common names

Because it is widely known, L. terrestris goes under a variety of common names. In Britain, it is primarily called the common earthworm or lob worm (though the name is also applied to a marine polychaete). In North America, the term nightcrawler (or vitalis) is also used, and more specifically Canadian nightcrawler, referring to the fact that the large majority of these worms sold commercially (usually as fishing bait) are from Southern Ontario. In Canada, it is also called the dew worm, or "Grandaddy Earthworm". In several Germanic languages, it is called variants of "rain worm", for example in German Gemeiner Regenwurm ("common rain worm") or in Danish Stor regnorm ("large rain worm"). In the rest of the world, many references are just to the scientific name, though with occasional reference to the above names.

Although this is not the most abundant earthworm, even in its native range, it is a very conspicuous and familiar earthworm species in garden and agricultural soils of the temperate zone, and is frequently seen on the surface, unlike most other earthworms. It is also used as the example earthworm for millions of biology students around the world, even in areas where the species does not exist. However, 'earthworm' can be a source of confusion since, in most of the world, other species are more typical. For example, through much of the unirrigated temperate areas of the world, the "common earthworm" is actually Aporrectodea (=Allolobophora) trapezoides, which in those areas is a similar size and dark colour to L. terrestris.

Description

Earthworm head Earthworm head.svg
Earthworm head

Lumbricus terrestris is relatively large, pinkish to reddish-brown in colour, generally 110–200 millimetres (4.3–7.9 in) in length and about 7–10 millimetres (0.28–0.39 in) in diameter. It has around 120–170 segments, often 135–150. The body is cylindrical in the cross section, except for the broad, flattened posterior section. Head end dark brown to reddish brown lateral, dorsal pigmentation fading towards the back. [1]

The worm has a hydrostatic skeleton and moves by longitudinal and circular muscular contractions. Setae – tiny hair-like projections – provide leverage against the surrounding soil. Surface movements on moist, flat terrain were reported at a speed of 20 m/h and, based on measurements of the length of the trail, nocturnal activity away from the burrow was estimated at up to 19 m during a single surface foray. Such movement is apparent during and after heavy rainfall and usually happens when people become aware of relatively large numbers of earthworms in, for example, urban ecosystems. This form of activity is often considered a way to escape floods and waterlogged burrows. However, this cannot be the case since L. terrestris, like other earthworms, can live in oxygenated water for long periods of time, stretching to weeks. Under less severe environmental conditions where air temperature and moisture are sufficient, the worm often moves around on the surface. This may be driven by resource availability or the desire to avoid mating with close relatives. [2]

Ecology

Lumbricus terrestris is a deep-burrowing anecic earthworm, [3] that is, it builds deep vertical burrows and surfaces to feed, as opposed to burrowing through the soil for its food as endogeic species. It removes litter from the soil surface, pulling it down into the mineral layer, and deposit casts of mixed organic and mineral material on the soil surface. [3] It lives in semi-permanent burrows and can reside in or escape to deeper soil layers. [4]

Its activity is limited by temperature and humidity. High soil and night air temperatures inhibit activity, as do low night moisture and dry soil. During such times, particularly in the summer, the worms will retreat to the deepest parts of their burrows. Winter temperatures can also reduce activity, while activity in maritime climates can continue through winter. [1]

Lumbricus terrestris can strongly influence soil fungi, creating distinctive micro-habitats called middens, which strongly affect the spatial distribution of plant litter and litter-dwelling animals on the soil surface. [5] In the soil system, L. terrestris worm casts have a relationship with plants which can be seen in such scenarios as plant propagation from seed or clone. Worm casts initiate root development, root biomass, and in effect, increase root percentage as opposed to the soil and soil systems without worm casts. [6]

In parts of Europe, notably the Atlantic fringe of northwestern Europe, it is now locally endangered due to predation by the New Zealand flatworm (Arthurdendyus triangulatus) [7] and the Australian flatworm (Australoplana sanguinea), [8] two predatory flatworms accidentally introduced from New Zealand and Australia. These predators are very efficient earthworm eaters, being able to survive for lengthy periods with no food, so still persist even when their prey has dropped to unsustainably low populations. In some areas, this is having a seriously adverse effect on the soil structure and quality. The soil aeration and organic material mixing previously done by the earthworms has ceased in some areas.

Diet

Lumbricus terrestris is a detritivore that eats mainly dead leaves on the soil floor and A-horizon mineral soil. [1] Preference is associated with high concentrations of calcium and likely nitrogen. As a result, ash, basswood and aspen are most favored, [9] followed by sugar maple and maple varieties. Oak is less palatable due to its low concentration of calcium, but will be eaten if no higher calcium leaves are available. [3] [10]

While they generally feed on plant material, they have been observed feeding on dead insects, soil micro-organisms, [11] and feces. [12]

Reproduction

Lumbricus terrestris is an obligatorily biparental, simultaneous hermaphrodite worm, [13] that reproduces sexually with individuals mutually exchanging sperm. [3] Copulation occurs on the soil surface, but partners remain anchored in their burrow and mating is preceded by repeated mutual burrow visits between neighbors. Additionally, when mates separate, one of them can be pulled out of its burrow. [14] Mating frequency is relatively high (once every 7–11 days). The relative size of the mate, the distance from the presumed mates, the chance of being dragged to the surface, and the size-related fecundity all tend to play key roles in the mating behavior of the nightcrawler. [14]

Sperm is stored for as long as 8 months, and mated individuals produce cocoons for up to 12 months after the mating. [3] Fertilization takes place in the cocoon and the cocoon is deposited in a small chamber in the soil adjacent to the parental burrow. After a few weeks, young worms emerge and begin to feed in the soil. In the early juvenile phase, the worms do not develop the vertical burrows typical of adults. Adulthood is likely to require a minimum of one year of development, with reproductive maturity reached in the second year. [1] The natural lifespan of L. terrestris is unknown, though individuals have lived for six years in captivity. [15]

As an invasive species in North America

Lumbricus terrestris is considered invasive in the north central United States. It does not do well in tilled fields because of pesticide exposure, physical injuries from farm equipment and a lack of nutrients. [16] [17] It thrives in fence rows and woodlots and can lead to reductions in native herbaceous and tree regrowth. [18] [19]

Related Research Articles

<span class="mw-page-title-main">Vermicompost</span> Product of the composting process using various species of worms

Vermicompost (vermi-compost) is the product of the decomposition process using various species of worms, usually red wigglers, white worms, and other earthworms, to create a mixture of decomposing vegetable or food waste, bedding materials, and vermicast. This process is called vermicomposting, with the rearing of worms for this purpose is called vermiculture.

<span class="mw-page-title-main">Megascolecidae</span> Family of annelid worms

Megascolecidae is a family of earthworms native to Madagascar, Australia, New Zealand, Asia, and North America. All species of the Megascolecidae belong to the Clitellata class. The Megascolecidae comprise a large family of earthworms and they can grow up to 2 meters in length. The intercontinental distribution of Megascolecidae species favours the continental drift theory.

<span class="mw-page-title-main">Giant Gippsland earthworm</span> Species of annelid worm

The giant Gippsland earthworm, is one of Australia's 1,000 native earthworm species.

<span class="mw-page-title-main">New Zealand flatworm</span> Species of flatworm

The New Zealand flatworm is a large land flatworm native to New Zealand. It can vary from 5 mm in length when hatched to approximately 17 centimetres (6.7 in) in mature adults.

<i>Lumbricus rubellus</i> Species of annelid worm

Lumbricus rubellus is a species of earthworm that is related to Lumbricus terrestris. It is usually reddish brown or reddish violet, iridescent dorsally, and pale yellow ventrally. They are usually about 25 millimetres (0.98 in) to 105 millimetres (4.1 in) in length, with around 95–120 segments. Their native distribution was mainland Europe and the British Isles, but they have currently spread worldwide in suitable habitats.

<i>Eisenia fetida</i> Species of annelid worm

Eisenia fetida, known under various common names such as manure worm, redworm, brandling worm, panfish worm, trout worm, tiger worm, red wiggler worm, etc., is a species of earthworm adapted to decaying organic material. These worms thrive in rotting vegetation, compost, and manure. They are epigean, rarely found in soil. In this trait, they resemble Lumbricus rubellus.

<span class="mw-page-title-main">Clitellata</span> Class of annelid worms

The Clitellata are a class of annelid worms, characterized by having a clitellum – the 'collar' that forms a reproductive cocoon during part of their life cycles. The clitellates comprise around 8,000 species. Unlike the class of Polychaeta, they do not have parapodia and their heads are less developed.

<span class="mw-page-title-main">Geoplanidae</span> Family of flatworms

Geoplanidae is a family of flatworms known commonly as land planarians or land flatworms.

Gilberto Righi (1937–1999) was an important earthworm taxonomist from São Paulo, Brazil, who helped define the magnitude of his country's diverse soil fauna.

<span class="mw-page-title-main">Earthworm</span> Terrestrial invertebrate, order Opisthopora

An earthworm is a soil-dwelling terrestrial invertebrate that belongs to the phylum Annelida. The term is the common name for the largest members of the class Oligochaeta. In classical systems, they were in the order of Opisthopora since the male pores opened posterior to the female pores, although the internal male segments are anterior to the female. Theoretical cladistic studies have placed them in the suborder Lumbricina of the order Haplotaxida, but this may change. Other slang names for earthworms include "dew-worm", "rainworm", "nightcrawler", and "angleworm". Larger terrestrial earthworms are also called megadriles as opposed to the microdriles in the semiaquatic families Tubificidae, Lumbricidae and Enchytraeidae. The megadriles are characterized by a distinct clitellum and a vascular system with true capillaries.

<i>Dendrobaena hortensis</i> Species of annelid

The European nightcrawler is a medium-small earthworm averaging about 1.5 g when fully grown. Generally blueish, pink-grey in color with a banded or striped appearance, the tips of their tails are often cream or pale yellow. When the species has not been feeding, it is pale pink. The species is usually found in deep woodland litter and garden soils that are rich in organic matter in European countries. D. hortensis is sold primarily as a bait worm, but its popularity as a composting worm is increasing.

<span class="mw-page-title-main">Invasive earthworms of North America</span>

Invasive species of earthworms from the suborder Lumbricina have been expanding their range in North America. Earthworms are considered one of the most abundant macroinvertebrates in the soil of ecosystems in temperate and tropical climates. There are around 3,000 species known worldwide. They are considered keystone species in their native habitats of Asia and Europe because, as detritivores, they alter many different variables of their ecosystem. Their introduction to North America has had marked effects on the nutrient cycles and soil profiles in temperate forests. These earthworms increase the cycling and leaching of nutrients by breaking up decaying organic matter and spreading it into the soil. This thins out the soil rapidly because earthworms do not require a mate to reproduce, allowing them to spread fast. Since plants native to these northern forests are evolutionarily adapted to the presence of thick layers of decaying organic matter, the introduction of worms can lead to a loss of biodiversity as young plants face less nutrient-rich conditions. Some species of trees and other plants may be incapable of surviving such changes in available nutrients. This change in the plant diversity in turn affects other organisms and often leads to increased invasions of other exotic species as well as overall forest decline. They are considered one of the most invasive animals in the Midwestern United States along with feral swine.

<i>Bipalium adventitium</i> Species of flatworm

Bipalium adventitium, the wandering broadhead planarian, is a land planarian in the subfamily Bipaliinae. It has been accidentally introduced in the United States, where it is considered invasive.

Earthworms are invasive species throughout the world. Of a total of about 6,000 species of earthworm, about 120 species are widely distributed around the globe. These are the peregrine or cosmopolitan earthworms. Some of these are invasive species in many regions.

Pit and mounds are small, persistent microtopographical features that present themselves after a disturbance event occurs and uproots trees via windthrow. The uprooted tree falls, and a pit forms in the forest floor where the root mass and associated soil matrix used to be. Eventually after a period of time in which the roots decay, the associated soil matrix that was pulled out of the ground with the roots falls back to the ground, creating a corresponding mound.

<i>Dendrodrilus rubidus</i> Species of annelid worm

Dendrodrilus rubidus is a species of earthworm in the family Lumbricidae. It is native to Europe, and it is a widespread introduced species, occurring on every continent except Antarctica, as well as many islands. It is often invasive. It is sometimes used as fishing bait, and is marketed under many nonspecific names, including red wiggler, jumping red wiggler, red trout worm, jumbo red worm, and pink worm. Other common names include bank worm, tree worm, and gilt tail.

<span class="mw-page-title-main">Annelid</span> Phylum of segmented worms

The annelids, also known as the segmented worms, are a large phylum, with over 22,000 extant species including ragworms, earthworms, and leeches. The species exist in and have adapted to various ecologies – some in marine environments as distinct as tidal zones and hydrothermal vents, others in fresh water, and yet others in moist terrestrial environments.

<i>Allolobophora chlorotica</i> Species of annelid worm

Allolobophora chlorotica is a species of earthworm that feeds and lives in soil. This species stands out from other earthworms due to the presence of three pairs of sucker-like discs on the underside of the clitellum. An examination of A. chlorotica specimens from many parts of the British Isles suggests that there are two forms of this species, one with green pigment in the body wall, and one which lacks this pigment, making it pink.

<i>Microplana terrestris</i> Species of flatworm

Microplana terrestris is a species of free-living, terrestrial flatworm in the order Tricladida. It was first described in 1773 by the Danish naturalist Otto Friedrich Müller as Fasciola terrestris, but has since been reassigned to the genus Microplana.

<i>Octolasion lacteum</i> Species of worm

Octolasion lacteum is a species of earthworm of the genus Octolasion. In New Zealand it has been found in West Coast soils and in Canterbury. They are found in mostly moist areas deep under the soil as they feed in the nutrients within the soil. Unlike other worm species, these are known to survive in acidic soil as well as soil that is not as organic compared to other places. They provide some important roles in the ecosystem as well as threats to other species as well. After a drought, they help the soil get more organic by adding more carbon dioxide in the soil and the waste from the O. lacteum also provides nutrients for the soil. In another case, they can also be invasive in a way that they suck up carbon in the soil which means plants have less causing a disruption to the food web. Lastly, they reproduce by cross parthogenic reproduction.

References

  1. 1 2 3 4 5 "Lumbricus terrestris". CAB International. Retrieved 11 November 2020.
  2. Butt, Kevin R.; Nuutinen, Visa (2005). "The dawn of the dew worm". Biologist. 52 (4): 1–7.
  3. 1 2 3 4 5 "Lumbricus terrestris". GISD. Retrieved 11 November 2020.
  4. Valckx, J.; Govers, Gerard; Hermy, Martin; Muys, Bart (2011). "Optimizing Earthworm Sampling in Ecosystems" (PDF). In A. Karaca (ed.). Biology of Earthworms. Vol. 24. Berlin, Heidelberg: Springer. pp. 19–38. ISBN   978-3-642-14635-0. Archived from the original (PDF) on 26 November 2017.
  5. Orazova, Maral Kh.; Semenova, Tatyana A.; Tiunov, Alexei V. (2003). "The microfungal community of Lumbricus terrestris middens in a linden (Tilia cordata) forest". Pedobiologia. 47 (1): 27–32. doi:10.1078/0031-4056-00166. ISSN   0031-4056 . Retrieved 11 November 2020.
  6. Tomati, U.; Grappelli, A.; Galli, E. (1 January 1988). "The hormone-like effect of earthworm casts on plant growth". Biology and Fertility of Soils. 5 (4): 288–294. doi:10.1007/BF00262133. ISSN   1432-0789. S2CID   32495106.
  7. Jones, H. D.; Santoro, Giulio; Boag, Brian; Neilson, Roy (2001). "The diversity of earthworms in 200 Scottish fields and the possible effect of New Zealand land flatworms (Arthurdendyus triangulatus) on earthworm populations". Annals of Applied Biology. 139 (1): 75–92. doi:10.1111/j.1744-7348.2001.tb00132.x. ISSN   1744-7348.
  8. Santoro, Giulio; Jones, Hugh D. (January 2001). "Comparison of the earthworm population of a garden infested with the Australian land flatworm (Australoplana sanguinea alba) with that of a non-infested garden". Pedobiologia. 45 (4): 313–328. doi:10.1078/0031-4056-00089.
  9. Knollenberg, Wesley G.; Merritt, Richard W.; Lawson, Daniel L. (January 1985). "Consumption of Leaf Litter by Lumbricus terrestris (Oligochaeta) on a Michigan Woodland Floodplain". American Midland Naturalist. 113 (1): 1–6. doi:10.2307/2425341. ISSN   0003-0031. JSTOR   2425341 . Retrieved 11 November 2020.
  10. Suárez, Esteban R.; Fahey, Timothy J.; Yavitt, Joseph B.; Groffman, Peter M.; Bohlen, Patrick J. (February 2006). "Patterns of Litter Disappearance in a Northern Hardwood Forest Invaded By Exotic Earthworms". Ecological Applications. 16 (1): 154–165. doi:10.1890/04-0788. ISSN   1051-0761. PMID   16705969 . Retrieved 11 November 2020.
  11. Doug Collicutt. "Biology of the Night Crawler". NatureNorth.
  12. Fosgate, O.T.; Babb, M.R. (June 1972). "Biodegradation of Animal Waste by Lumbricus terrestris". Journal of Dairy Science. 55 (6): 870–872. doi: 10.3168/jds.S0022-0302(72)85586-3 . ISSN   0022-0302. PMID   5032211.
  13. Butt, Kevin R.; Nuutinen, Visa (1998). "Reproduction of the earthworm Lumbricus terrestris Linné after the first mating". Canadian Journal of Zoology. 76 (1): 104–109. doi:10.1139/z97-179. ISSN   0008-4301 . Retrieved 11 November 2020.
  14. 1 2 Michiels, N. K. (September 2001). "Precopulatory mate assessment in relation to body size in the earthworm Lumbricus terrestris: avoidance of dangerous liaisons?". Behavioral Ecology. 12 (5): 612–618. doi: 10.1093/beheco/12.5.612 . ISSN   1465-7279.
  15. "Earthworm Research Group (at the University of Central Lancashire):Frequently Asked Questions". Archived from the original on 13 March 2009.
  16. Kladivko EJ, Akhouri NM, Weesies G (1997). "Earthworm populations and species distributions under no-till and conventional tillage in Indiana and Illinois". Soil Biol Biochem. 29 (3–4): 613–615. doi:10.1016/s0038-0717(96)00187-3.
  17. Butt KR, Shipitalo MJ, Bohlen PJ, Edwards WM, Parmelee RW (1999). "Long-term trends in earthworm populations of cropped experimental watershed in Ohio, USA". Pedobiologia. 43: 713–719.
  18. Frelich LE, Hale CM, Scheu S, Holdsworth AR, Heneghan L, Bohlen PJ, Reich PB (2006). "Earthworm invasion into previously earthworm-free temperate and boreal forests". Biol Invasions. 8 (6): 1235–1245. doi:10.1007/s10530-006-9019-3. hdl: 11299/175603 . S2CID   446677.
  19. Hale CM, Frelich LE, Reich PB (2005). "Exotic European earthworm invasion dynamics in northern hardwood forests of Minnesota, USA". Ecol Appl. 15 (3): 848–860. doi:10.1890/03-5345.

Commons-logo.svg Media related to Lumbricus terrestris at Wikimedia Commons

Further reading