Methylpyridinium

Last updated
Methylpyridinium
1-Methylpyridinium.svg
Names
Preferred IUPAC name
1-Methylpyridin-1-ium
Other names
N-Methylpyridinium
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C6H8N/c1-7-5-3-2-4-6-7/h2-6H,1H3/q+1
    Key: PQBAWAQIRZIWIV-UHFFFAOYSA-N
  • InChI=1/C6H8N/c1-7-5-3-2-4-6-7/h2-6H,1H3/q+1
    Key: PQBAWAQIRZIWIV-UHFFFAOYAW
  • [n+]1(ccccc1)C
Properties
C6H8N+
Molar mass 94.134 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Methylpyridinium is an ion with the formula C5H5NCH+3. It is the N-methylated derivative of pyridine. It confers no color to its salts. The ion is classified as an quaternary ammonium ion. [1]

Contents

Preparation and occurrence

Methylpyridinium is prepared by treating pyridine with dimethylsulfate: [2]

C5H5N + (CH3O)2SO2[C5H5NCH3]+CH3OSO3

It is found in some coffee products. [3] It is not present in unroasted coffee beans, but is formed during roasting from its precursor chemical, trigonelline. [3] It is under investigation by scientists regarding its potential anti-carcinogenic properties, [4] particularly an effect on colon cancer. [3]

Ionic liquid

The chloride salt of N-methylpyridinium behaves as an ionic liquid. Mixtures of that salt and zinc chloride have been characterised over the temperature range 150–200 °C (423–473 K). [5] [6] [7] [8]

See also

Related Research Articles

<span class="mw-page-title-main">Pyridine</span> Heterocyclic aromatic organic compound

Pyridine is a basic heterocyclic organic compound with the chemical formula C5H5N. It is structurally related to benzene, with one methine group (=CH−) replaced by a nitrogen atom (=N−). It is a highly flammable, weakly alkaline, water-miscible liquid with a distinctive, unpleasant fish-like smell. Pyridine is colorless, but older or impure samples can appear yellow, due to the formation of extended, unsaturated polymeric chains, which show significant electrical conductivity. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Historically, pyridine was produced from coal tar. As of 2016, it is synthesized on the scale of about 20,000 tons per year worldwide.

<span class="mw-page-title-main">Acridine</span> Chemical compound

Acridine is an organic compound and a nitrogen heterocycle with the formula C13H9N. Acridines are substituted derivatives of the parent ring. It is a planar molecule that is structurally related to anthracene with one of the central CH groups replaced by nitrogen. Like the related molecules pyridine and quinoline, acridine is mildly basic. It is an almost colorless solid, which crystallizes in needles. There are few commercial applications of acridines; at one time acridine dyes were popular, but they are now relegated to niche applications, such as with acridine orange. The name is a reference to the acrid odour and acrid skin-irritating effect of the compound.

Demethylation is the chemical process resulting in the removal of a methyl group (CH3) from a molecule. A common way of demethylation is the replacement of a methyl group by a hydrogen atom, resulting in a net loss of one carbon and two hydrogen atoms.

<span class="mw-page-title-main">Pyridinium</span> Chemical compound

Pyridinium refers to the cation [C5H5NH]+. It is the conjugate acid of pyridine. Many related cations are known involving substituted pyridines, e.g. picolines, lutidines, collidines. They are prepared by treating pyridine with acids.

In organic chemistry, an aryl halide is an aromatic compound in which one or more hydrogen atoms, directly bonded to an aromatic ring are replaced by a halide. Haloarenes are different from haloalkanes because they exhibit many differences in methods of preparation and properties. The most important members are the aryl chlorides, but the class of compounds is so broad that there are many derivatives and applications.

<span class="mw-page-title-main">Zinc chloride</span> Chemical compound

Zinc chloride is an inorganic chemical compound with the formula ZnCl2·nH2O, with n ranging from 0 to 4.5, forming hydrates. Zinc chloride, anhydrous and its hydrates, are colorless or white crystalline solids, and are highly soluble in water. Five hydrates of zinc chloride are known, as well as four forms of anhydrous zinc chloride.

<span class="mw-page-title-main">Ionic liquid</span> Salt in the liquid state

An ionic liquid (IL) is a salt in the liquid state at ambient conditions. In some contexts, the term has been restricted to salts whose melting point is below a specific temperature, such as 100 °C (212 °F). While ordinary liquids such as water and gasoline are predominantly made of electrically neutral molecules, ionic liquids are largely made of ions. These substances are variously called liquid electrolytes, ionic melts, ionic fluids, fused salts, liquid salts, or ionic glasses.

<span class="mw-page-title-main">Chromium(III) chloride</span> Chemical compound

Chromium(III) chloride (also called chromic chloride) is an inorganic chemical compound with the chemical formula CrCl3. It forms several hydrates with the formula CrCl3·nH2O, among which are hydrates where n can be 5 (chromium(III) chloride pentahydrate CrCl3·5H2O) or 6 (chromium(III) chloride hexahydrate CrCl3·6H2O). The anhydrous compound with the formula CrCl3 are violet crystals, while the most common form of the chromium(III) chloride are the dark green crystals of hexahydrate, CrCl3·6H2O. Chromium chlorides find use as catalysts and as precursors to dyes for wool.

<span class="mw-page-title-main">Thionyl chloride</span> Inorganic compound (SOCl2)

Thionyl chloride is an inorganic compound with the chemical formula SOCl2. It is a moderately volatile, colourless liquid with an unpleasant acrid odour. Thionyl chloride is primarily used as a chlorinating reagent, with approximately 45,000 tonnes per year being produced during the early 1990s, but is occasionally also used as a solvent. It is toxic, reacts with water, and is also listed under the Chemical Weapons Convention as it may be used for the production of chemical weapons.

<span class="mw-page-title-main">Rhodium(III) chloride</span> Chemical compound

Rhodium(III) chloride refers to inorganic compounds with the formula RhCl3(H2O)n, where n varies from 0 to 3. These are diamagnetic red-brown solids. The soluble trihydrated (n = 3) salt is the usual compound of commerce. It is widely used to prepare compounds used in homogeneous catalysis.

<span class="mw-page-title-main">Pyridinium chloride</span> Chemical compound

Pyridinium chloride is an organic chemical compound with a formula of C5H5NHCl.

Pyrylium is a cation with formula C5H5O+, consisting of a six-membered ring of five carbon atoms, each with one hydrogen atom, and one positively charged oxygen atom. The bonds in the ring are conjugated as in benzene, giving it an aromatic character. In particular, because of the positive charge, the oxygen atom is trivalent. Pyrilium is a mono-cyclic and heterocyclic compound, one of the oxonium ions.

<span class="mw-page-title-main">Molten salt</span> Salt that has melted, often by heating to high temperatures

Molten salt is salt which is solid at standard temperature and pressure but liquified due to elevated temperature. A salt that is liquid even at standard temperature and pressure is usually called a room-temperature ionic liquid, and molten salts are technically a class of ionic liquids.

<span class="mw-page-title-main">Zincke reaction</span>

The Zincke reaction is an organic reaction, named after Theodor Zincke, in which a pyridine is transformed into a pyridinium salt by reaction with 2,4-dinitro-chlorobenzene and a primary amine.

<span class="mw-page-title-main">1-Methylimidazole</span> Chemical compound

1-Methylimidazole or N-methylimidazole is an aromatic heterocyclic organic compound with the formula CH3C3H3N2. It is a colourless liquid that is used as a specialty solvent, a base, and as a precursor to some ionic liquids. It is a fundamental nitrogen heterocycle and as such mimics for various nucleoside bases as well as histidine and histamine.

<span class="mw-page-title-main">Chloro(pyridine)cobaloxime</span> Chemical compound

Chloro(pyridine)cobaloxime is a coordination compound containing a CoIII center with octahedral coordination. It has been considered as a model compound of vitamin B12 for studying the properties and mechanism of action of the vitamin. It belongs to a class of bis(dimethylglyoximato)cobalt(III) complexes with different axial ligands, called cobaloximes. Chloro(pyridine)cobaloxime is a yellow-brown powder that is sparingly soluble in most solvents, including water.

The Kröhnke pyridine synthesis is reaction in organic synthesis between α-pyridinium methyl ketone salts and α, β-unsaturated carbonyl compounds used to generate highly functionalized pyridines. Pyridines occur widely in natural and synthetic products, so there is wide interest in routes for their synthesis. The method is named after Fritz Kröhnke.

<span class="mw-page-title-main">Transition metal pyridine complexes</span>

Transition metal pyridine complexes encompass many coordination complexes that contain pyridine as a ligand. Most examples are mixed-ligand complexes. Many variants of pyridine are also known to coordinate to metal ions, such as the methylpyridines, quinolines, and more complex rings.

<span class="mw-page-title-main">Acetyl hypochlorite</span> Chemical compound

Acetyl hypochlorite, also known as chlorine acetate, is a chemical compound with the formula CH3COOCl. It is a photosensitive colorless liquid that is a short lived intermediate in the Hunsdiecker reaction.

<span class="mw-page-title-main">Tetrahydropyridine</span> Heterocycles

Tetrahydropyridines are heterocycles with the formula C5H9N. Three isomers exist, which differ by the location of the double bond. None of the parent species occur widely, so they are mainly of theoretical interest. Although the parent tetrahydropyridines are rare, many substituted tetrahydropyridines are known.

References

  1. Shimizu, Shinkichi; Watanabe, Nanao; Kataoka, Toshiaki; Shoji, Takayuki; Abe, Nobuyuki; Morishita, Sinji; Ichimura, Hisao (2000). "Pyridine and Pyridine Derivatives". Ullmann's Encyclopedia of Industrial Chemistry. p. 558. doi:10.1002/14356007.a22_399. ISBN   9783527303854.
  2. E. A. Prill, S. M. McElvain (1935). "1-Methyl-2-Pyridone". Organic Syntheses. 15: 41. doi:10.15227/orgsyn.015.0041.
  3. 1 2 3 "Highly Active Compound Found In Coffee May Prevent Colon Cancer". ScienceDaily. Oct 15, 2003. Retrieved Oct 10, 2012.
  4. Boettler, U; Volz, N; Pahlke, G; Teller, N; Kotyczka, C; Somoza, V; Stiebitz, H; Bytof, G; et al. (2011). "Coffees rich in chlorogenic acid or N-methylpyridinium induce chemopreventive phase II-enzymes via the Nrf2/ARE pathway in vitro and in vivo". Molecular Nutrition & Food Research. 55 (5): 798–802. doi:10.1002/mnfr.201100115. PMID   21448860.
  5. Simonis, L.; Coppe, C.; Glibert, J.; Claes, P. (1986). "Properties of mixtures of zinc chloride and N-methylpyridinium chloride in the molten state – I. Phase diagram and heats of mixing". Thermochimica Acta. 99: 223–232. Bibcode:1986TcAc...99..223S. doi:10.1016/0040-6031(86)85285-6.
  6. Claes, P.; Simonis, L.; Glibert, J. (1986). "Properties of mixtures of zinc chloride and N-methylpyridinium chloride in the molten state – II. Specific mass, electrical conductivity and viscosity". Electrochimica Acta. 31 (12): 1525–1530. doi:10.1016/0013-4686(86)87071-2.
  7. Claes, P. F.; Coppe, C. R.; Simonis, L. A.; Glibert, J. E. (1987). "Properties of mixtures of zinc chloride and N-methylpyridinium chloride in the molten state – III. Solubility of hydrogen chloride under atmospheric pressure and comparison with zinc chloride—N-ethylpyridinium bromide mixtures". Journal of Chemical and Engineering Data. 32 (1): 70–72. doi:10.1021/je00047a020.
  8. Marković, R.; Minić, D. M. (1997). "Conductometric and thermal studies of fused Zn(II) salts containing methyl substituted pyridinium cations". Materials Chemistry and Physics. 50 (1): 20–24. doi:10.1016/S0254-0584(97)80178-2.