North American porcupine

Last updated

North American porcupine
Temporal range:
Middle Pleistocenepresent (~130,000–0 YBP) [1]
Porcupine-BioDome.jpg
Status TNC G5.svg
Secure  (NatureServe) [3]
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Rodentia
Family: Erethizontidae
Subfamily: Erethizontinae
Genus: Erethizon
Species:
E. dorsatum
Binomial name
Erethizon dorsatum
Subspecies
  • E. d. dorsatum
  • E. d. bruneri
  • E. d. couesi
  • E. d. epixanthum
  • E. d. myops
  • E. d. nigrescens
  • E. d. picinum
Erethizon dorsatum map.svg
Synonyms

Erethizon dorsatus [4] [nb 1]
Hystrix dorsataLinnaeus, 1758

Contents

The North American porcupine (Erethizon dorsatum), also known as the Canadian porcupine, is a large quill-covered rodent in the New World porcupine family. It is the second largest rodent in North America after the North American beaver (Castor canadensis). The porcupine is a caviomorph rodent whose ancestors crossed the Atlantic from Africa to Brazil 30 million years ago, [5] [6] and then migrated to North America during the Great American Interchange after the Isthmus of Panama rose 3 million years ago. [7]

Etymology

The word "porcupine" comes from the middle or old French word porcespin, which means 'thorn pig'. Its roots derive from the Latin words porcus or pig and spina meaning thorns. [8] Other colloquial names for the animal include quill pig. It is also referred to as the Canadian porcupine or common porcupine. [9] The porcupine's scientific name, Erethizon dorsatum, can be loosely translated as "the animal with the irritating back". Native American terms for it include the Lakota name pahin meaning quill, [10] the Ho-Chunk name waxąhį, and the Chipewyan name ts'l. [11]

Taxonomy and evolution

The North American porcupine migrated from South America, where all New World porcupines or hystricomorphs evolved. Erethizon appeared in North America shortly after the two continents joined together in the later Tertiary period. Other hystricomorphs also migrated, but Erethizon was the only one to survive north of Mexico. No known fossils are attributed to hystricomorphs prior to the late Tertiary period. Some fossils, such as species from the family Paramyidae, show resemblance to the porcupine, but they are so primitive and generalized that they could be ancestors to all later rodents.[ citation needed ]

South American hystricomorphs first appeared in the Lower Oligocene period. They are thought to have migrated from Africa, ancestors of the Old World porcupines or Hystricidae or they originated based on a migration of the North American Paramyidae. [12]

The earliest purported appearance of E. dorsatum in the fossil record is from the Pleistocene (Irvingtonian) era, found along the Arroyo del Cedazo near Aguascalientes, Mexico. [1] However, the validity of this fossil's taxonomy is a cause for debate, with some paleontologists arguing that it represents a member of the genus Coendou (the prehensile-tailed porcupines) instead. [1] The earliest uncontroversial fossils of E. dorsatum, found in the Conard Fissure of Arkansas, date back to the Middle Pleistocene (~130,000 YBP). [1]

Subspecies

Seven subspecies of E. dorsatum are recognized. [13] They are subdivided by different ranges across North America. By far the most common is E. d. dorsatum, which ranges from Nova Scotia to Alberta and from Virginia to the Yukon. E. d. picinum occupies a small range in northeastern Quebec and Labrador. E. d. couesi is the most southern ranging from northern Mexico to Colorado. E. d. bruneri can be found in the midwest from Arkansas to Montana. The last three are found in the west. From south to north they are E.d. epixanthum, E. d. nigrescens, and E. d. myops. [1]

Description

Juvenile male spends its first winters with its mother Juvenile-Male-Porky.jpg
Juvenile male spends its first winters with its mother

Porcupines are usually dark brown or black in color, with white highlights. They have a stocky body, a small face, short legs, and a short, thick tail. This species is the largest of the New World porcupines and is the second largest North American rodent, after the American beaver. The head-and-body length is 60 to 90 cm (2.0 to 3.0 ft), not counting a tail of 14.5 to 30 cm (5.7 to 11.8 in). The hind foot length is 7.5 to 9.1 cm (3.0 to 3.6 in). Weight can range from 3.5 to 18 kg (7.7 to 39.7 lb). [1] [14] Weight in adult females can average some 7 kg (15 lb) while 5 wild-caught males averaged 10.67 kg (23.5 lb). [15] [16]

The porcupine possesses antibiotics in its skin which may help prevent infection when a porcupine falls out of a tree and is stuck with its own quills upon hitting the ground. Porcupines fall out of trees fairly often because they are highly tempted by the succulent buds and tender twigs at the ends of the branches. The porcupine, the wolverine, and the skunk are the only North American mammals that have strongly contrasting black-and-white coloration, because they are the only mammals that benefit from letting other animals know where and what they are in the dark of night. [17] [ disputed discuss ]

Quills

E. d. dorsatum, resting in a tree, Ottawa, Ontario North American Porcupine, sleeping in tree.jpg
E. d. dorsatum, resting in a tree, Ottawa, Ontario

The most distinguishing feature of the porcupine is its coat of quills. An adult porcupine has about 30,000 quills that cover all of its body except its underbelly, face, and feet. Quills are modified hairs formed into sharp, barbed, hollow spines. They are used primarily for defense, but also serve to insulate their bodies during winter. The quills are normally flattened against the body and in this position are less easily dislodged. Porcupines do not throw their quills, but when threatened contract superficial muscles which cause the quills to stand up and out from their bodies. In this position they become easier to detach from the body, especially when the tail is swung toward an attacker. The barbs at the end of the spines lodge in the flesh of a victim and are difficult and painful to remove. [18]

Stench

The North American porcupine has a strong odor to warn away predators, which it can increase when agitated. The smell has been described as similar to strong human body odor, goats, or some cheeses. The odor is generated by a patch of skin called the rosette, on the lower back where modified quills serve as osmetrichia to broadcast the smell. [19] The characteristic odor comes from the R-enantiomer of delta-decalactone. [20] Not present is the S-enantiomer which smells like coconut and is used in flavorings and perfumes.

Distribution and habitat

In eastern North America, porcupines range from Canada to the Appalachian Mountains in West Virginia and Maryland. In the west they range from Alaska to northern mountains in Mexico. They are commonly found in coniferous and mixed forested areas, but have adapted to harsh environments, such as shrublands and tundra. They make their dens in hollow trees or in rocky areas. [2]

Ecology

Diet

Porcupine in a pear tree Porcupine, Maine, 4Sept2022.jpg
Porcupine in a pear tree
Porcupine in a cottonwood tree in Badlands National Park in South Dakota. North American Porcupine DSC2698.jpg
Porcupine in a cottonwood tree in Badlands National Park in South Dakota.

During the summer, they eat twigs, roots, stems, berries, leaves, and other vegetation. Porcupines also eat certain insects and nuts. In the winter, they mainly eat conifer needles and tree bark. Porcupines are selective in their consumption; for example out of every 1,000 trees in the Catskill Mountains, porcupines will only eat from 1-2 linden trees and one big-toothed aspen.[ citation needed ]

Behavior

Porcupines are nearsighted and slow-moving. They are mainly active at night (nocturnal); on summer days, they often rest in trees. They do not hibernate, but sleep in and stay close to their dens in winter. The strength of the porcupine's defense has given it the ability to live a solitary life, unlike many herbivores, which must move in flocks or herds. Consequently, the porcupine has "an extraordinary ability to learn complex mazes and to remember them as much as a hundred days afterward". [17]

Defense

Adult North American porcupine has 30,000 quills Porcupine in Tree (50862928908).jpg
Adult North American porcupine has 30,000 quills

The North American porcupine has specific behaviors to warn or defend against predators. The defense strategy is based on aposematism in several modalities. It has a strong warning odor which it can increase when agitated. When threatened, an adult porcupine can bristle its quills, displaying a white stripe down its back, and use its teeth to make a warning, clacking sound. If the olfactory, visual, and auditory warnings fail, then it can rely on its quills. An adult porcupine when attacked turns its rear to the predator. When approached, the porcupine can swing its tail at an attacker's face. Despite popular myth, the porcupine does not throw its quills. Instead, when a quill comes in contact with the attacker, it can easily penetrate and become embedded in its skin. Each quill contains microscopic barbs which allow it to stick into the flesh of an attacker. This strategy is successful against most attacks. With a face full of quills, an attacking creature often retreats. The porcupine's last line of defense is to climb a tree.[ citation needed ]

Predators

Natural predators of this species include fishers (a cat-sized mustelid), [21] wolverines, [22] coyotes, wolves, [23] American black bears, [24] and cougars, [25] as well as humans. The only known avian predators of this species are golden eagles and great horned owls. [26] [27] [28] In many cases, injury or even death may occur in the predator from embedded porcupine quills even if they are successful in dispatching the porcupine. [29] [30]

The North American porcupine is most at risk from the fisher (Pekania pennanti), the male of which may sometimes exceed a mass of 5.5 kg (12 lb). Fishers have two advantages that make them capable hunters of the porcupine. First, they are agile tree climbers, and may force a fleeing porcupine from a tree to the ground, where it is more vulnerable. There it will try to present its hindquarters and tail to the attacker, with the predator circling around and attempting to attack the prey. After repeated attacks, the porcupine eventually weakens, allowing the fisher to flip the porcupine over, rip open its underbelly, and consume its organs without exposing itself to the still dangerous quills. [31] [32] One study suggested that since male fishers are considerably larger than females (often weighing on average twice as much), only males are likely to hunt porcupines. It appears that female fishers usually favor prey such as snowshoe hares. [33] [34]

Another effective predator is the cougar. It does not avoid the quills so much as seek to avoid being impaled by too many of them. Some individuals have been found with dozens of quills embedded in their gums to no ill effect. It can climb trees, so its favorite method is to position itself below the porcupine and knock it to the ground, quickly dispatching it. Other predators, such as canids (wolves and coyotes), may attack but do not pose much of a threat. [26] [28] In some parts of the Great Basin, cougars have greatly decreased numbers of porcupines in mountainous forests through predation. [25] [35] However, in some cases porcupine quills have indeed killed cougars, although usually this is after the cougar has already consumed the porcupine. [36] [37]

Reproduction

Porcupines prior to mating, with the female characteristically above the male Tree Climbing Porcupines.jpg
Porcupines prior to mating, with the female characteristically above the male

Female porcupines are solitary for most of the year except during the fall when breeding season begins. At this time, they secrete a thick mucus which mixes with their urine. The resulting odor attracts males in the vicinity. Males that approach a female do not automatically begin mating. The first male that comes along typically sits in the same tree below a female. If another male approaches, he may fight for the right to mate. Once a dominant male is successful, he approaches the female and uses a spray of his urine on the female. Only a few drops touch the female, but the chemical reaction allows the female to enter estrus fully. Once this is accomplished high in the tree, the mating process takes place on the ground. When porcupines are mating, they tighten their skin and hold their quills flat, so as not to injure each other. Mating may occur repeatedly until the female loses interest and climbs back into the tree.

The North American porcupine has a long gestation period relative to other rodents, an average of 202 days. [38] By contrast, the North American beaver, which is comparable in size, has a gestation period of 128 days. [39] The eastern grey squirrel (Sciurus carolinensis) has a gestation period of just 44 days. [40] North American porcupines give birth to a single young. At birth, they weigh about 450 g, which increases to nearly 1 kg after the first two weeks. They do not gain full adult weight until the end of the second summer about 4.5 kg. Their quills harden soon after birth.

Female porcupines provide all parental care. For the first two weeks the young rely on their mother for sustenance. After this they learn to climb trees and start to forage. They continue to nurse for up to four months, which coincides with the fall mating season. They stay close to their mothers. Mother porcupines do not defend their young, but have been known to care for them even after death. In one case, when a baby had fallen to its death from a tree, the mother came down and stayed by her offspring's side for hours waiting vainly for it to revive.[ citation needed ]

Life expectancy

North American porcupines have a relatively long life expectancy, with some individuals reaching 30 years of age. [41] Common causes of mortality include predation, starvation, falling out of a tree, and being run over by motor vehicles. [42]

Porcupines and humans

Porcupines are considered by some to be pests because of the damage that they often inflict on trees and wooden and leather objects. Plywood is especially vulnerable because of the salts added during manufacture. They also often injure domestic dogs who inspect or attack them.

Their quills are used by Native Americans to decorate articles such as baskets and clothing. Porcupines are edible and were an important source of food, especially in winter, to the native peoples of Canada's boreal forests. They move slowly (having few threats in their natural environment) and are often hit by vehicles while crossing roads.

Porcupines are infamous among backpackers and backpacking publications [43] [44] for their love of salt, especially eating road salt-covered boots left outside of tents overnight. They have a similar reputation among forestry workers of all types for trying to eat sweat-soaked gloves and wooden handles on tools. [45]

Conservation status

Globally, the North American porcupine is listed as a species of least concern. [46] It is common throughout its range except in some U.S. states in the southeast part of its range. For example, it is listed as a species in need of conservation in Maryland. [47] [48] As of 1999, 15 remnant populations remain scattered throughout north-central Mexico. These live in riparian forests, mesquite scrubland, grasslands, and thorn forests. They are threatened by hunting and habitat loss. As of 1994, the animal was listed as an endangered species in Mexico. [49]

Related Research Articles

<span class="mw-page-title-main">Porcupine</span> Rodent with a coat of sharp spines

Porcupines are large rodents with coats of sharp spines, or quills, that protect them against predation. The term covers two families of animals: the Old World porcupines of the family Hystricidae, and the New World porcupines of the family Erethizontidae. Both families belong to the infraorder Hystricognathi within the profoundly diverse order Rodentia and display superficially similar coats of rigid or semi-rigid quills, which are modified hairs composed of keratin. Despite this, the two groups are distinct from one another and are not closely related to each other within the Hystricognathi. The largest species of porcupine is the third-largest living rodent in the world, after the capybara and beaver.

<span class="mw-page-title-main">Cougar</span> Large species of cat native to the Americas

The cougar, also known as the panther, mountain lion, catamount and puma, is a large cat native to the Americas. It inhabits North, Central and South America, making it the most widely distributed wild, terrestrial mammal in the Western Hemisphere, and one of the most widespread in the world. Its range spans the Yukon, British Columbia and Alberta provinces of Canada, the Rocky Mountains and areas in the western United States. Further south, its range extends through Mexico to the Amazon Rainforest and the southern Andes Mountains in Patagonia. It is an adaptable generalist species, occurring in most American habitat types. It prefers habitats with dense underbrush and rocky areas for stalking but also lives in open areas.

<span class="mw-page-title-main">Bobcat</span> Medium-sized North American wild cat

The bobcat, also known as the wildcat, bay lynx, or red lynx, is one of the four extant species within the medium-sized wild cat genus Lynx. Native to North America, it ranges from southern Canada through most of the contiguous United States to Oaxaca in Mexico. It is listed as Least Concern on the IUCN Red List since 2002, due to its wide distribution and large population. Although it has been hunted extensively both for sport and fur, populations have proven stable, though declining in some areas.

<span class="mw-page-title-main">Kangaroo rat</span> Genus of mammals belonging to the kangaroo rats, kangaroo mice, and pocket mice family of rodents

Kangaroo rats, small mostly nocturnal rodents of genus Dipodomys, are native to arid areas of western North America. The common name derives from their bipedal form. They hop in a manner similar to the much larger kangaroo, but developed this mode of locomotion independently, like several other clades of rodents.

<span class="mw-page-title-main">New World porcupine</span> Family of rodents

The New World porcupines, family Erethizontidae, are large arboreal rodents, distinguished by their spiny coverings from which they take their name. They inhabit forests and wooded regions across North America, and into northern South America. Although both the New World and Old World porcupine families belong to the Hystricognathi branch of the vast order Rodentia, they are quite different and are not closely related.

<span class="mw-page-title-main">Old World porcupine</span> Family of rodents

The Old World porcupines, or Hystricidae, are large terrestrial rodents, distinguished by the spiny covering from which they take their name. They range over the south of Europe and the Levant, most of Africa, India, and Southeast Asia as far east as Flores. Although both the Old World and New World porcupine families belong to the infraorder Hystricognathi of the vast order Rodentia, they are quite different and are not particularly closely related.

<i>Aglais io</i> Species of butterfly

Aglais io, the European peacock, or the peacock butterfly, is a colourful butterfly, found in Europe and temperate Asia as far east as Japan. The peacock butterfly is resident in much of its range, often wintering in buildings or trees. It therefore often appears quite early in spring.

<span class="mw-page-title-main">Great horned owl</span> Species of owl

The great horned owl, also known as the tiger owl or the hoot owl, is a large owl native to the Americas. It is an extremely adaptable bird with a vast range and is the most widely distributed true owl in the Americas. Its primary diet is rabbits and hares, rats and mice, and voles, although it freely hunts any animal it can overtake, including rodents and other small mammals, larger mid-sized mammals, birds, reptiles, amphibians, and invertebrates.

<span class="mw-page-title-main">Fisher (animal)</span> Species of small, carnivorous mammal native to North America

The fisher is a carnivorous mammal native to North America, a forest-dwelling creature whose range covers much of the boreal forest in Canada to the northern United States. It is a member of the mustelid family, and is the only living member of the genus Pekania. It is sometimes referred to as a fisher cat, although it is not a cat.

<i>Erethizon</i> Genus of rodent

Erethizon is a genus of New World porcupine and the only one of its family to be found north of southern Mexico. The North American porcupine (Erethizon dorsatum) is the only extant species, but at least 4 extinct relatives are known, the oldest dating to the Late Pliocene. Porcupines entered North America during the Great American Interchange after the Isthmus of Panama rose 3 million years ago. Early species of the genus retained an elongate tail, unlike E. dorsatum.

<span class="mw-page-title-main">Cape porcupine</span> Species of rodent

The Cape porcupine, Cape crested porcupine or South African porcupine, is a species of Old World porcupine native to central and southern Africa.

<span class="mw-page-title-main">Indian crested porcupine</span> Species of rodent

The Indian crested porcupine is a hystricomorph rodent species native to southern Asia and the Middle East. It is listed as Least Concern on the IUCN Red List. It belongs to the Old World porcupine family, Hystricidae.

<span class="mw-page-title-main">African brush-tailed porcupine</span> Species of rodent

The African brush-tailed porcupine is a species of rat-like Old World porcupine, indigenous to a broad belt of Africa ranging from Guinea on the west coast to Kenya on the east. This is a common species with a very wide range, and despite it being used extensively for bushmeat, the International Union for Conservation of Nature has rated its conservation status as being of "least concern".

<span class="mw-page-title-main">Crested porcupine</span> Species of rodent

The crested porcupine, also known as the African crested porcupine, is a species of rodent in the family Hystricidae native to Italy, North Africa and sub-Saharan Africa.

Dr. Albert R. Shadle (1885–1963) was an American biologist noted for his research into porcupines and beavers. From 1919 until 1953, Shadle served as chairman of the biology department, and was instrumental in the advancement of science education, at the State University of New York at Buffalo. He also acted as a professor of biology whose pupils included noted entomologist Maynard Jack Ramsay.

In a zoological context, spines are hard, needle-like anatomical structures found in both vertebrate and invertebrate species. The spines of most spiny mammals are modified hairs, with a spongy center covered in a thick, hard layer of keratin and a sharp, sometimes barbed tip.

<span class="mw-page-title-main">Alston's brown mouse</span> Species of mammal

Alston's brown mouse, also called Alston's singing mouse, short-tailed singing mouse, or singing mouse, is a species of rodent in the family Cricetidae. It is found in Central America, from Chiapas, Mexico, to western Panama.

Choa Saidan Shah, is a town and Tehsil of Chakwal District in the Punjab Province of Pakistan. It is the capital and of one of the seven Union Councils of Choa Saidan Shah Tehsil.

<span class="mw-page-title-main">Rodent</span> Order of mammals

Rodents are mammals of the order Rodentia, which are characterized by a single pair of continuously growing incisors in each of the upper and lower jaws. About 40% of all mammal species are rodents. They are native to all major land masses except for Antarctica, and several oceanic islands, though they have subsequently been introduced to most of these land masses by human activity.

δ-Decalactone Chemical compound

δ-Decalactone (DDL) is a chemical compound, classified as a lactone, that naturally occurs in fruit and milk products in traces. It can be obtained from both chemical and biological sources. Chemically, it is produced from Baeyer–Villiger oxidation of delfone. From biomass, it can be produced via the hydrogenation of 6-pentyl-α-pyrone. DDL has applications in food, polymer, and agricultural industries to formulate important products.

References

Notes

  1. ITIS claims that Erethizon dorsatus is a valid name while Erethizon dorsatum is invalid, assuming that Erethizon is a masculine Latin noun; however it is in fact a Greek participle, not a Latin noun.

Citations

  1. 1 2 3 4 5 6 Woods, Charles A. (June 13, 1973). "Mammalian species: Erethizon dorsatum" (PDF). Mammalian Species (29). American Society of Mammalogists: 1–6. doi:10.2307/3504036. JSTOR   3504036. Archived from the original (PDF) on 2015-09-24. Retrieved January 1, 2013.
  2. 1 2 Emmons, L. (2016). "Erethizon dorsatum". IUCN Red List of Threatened Species . 2016: e.T8004A22213161. doi: 10.2305/IUCN.UK.2016-3.RLTS.T8004A22213161.en . Retrieved 13 November 2021.
  3. "Erethizon dorsatum". NatureServe Explorer. Retrieved 17 April 2024.
  4. "Erethizon dorsatus". Integrated Taxonomic Information System. See also "Report". Integrated Taxonomic Information System.
  5. Patterson, Bruce D.; Upham, Nathan S. (2014-12-01). "A newly recognized family from the Horn of Africa, the Heterocephalidae (Rodentia: Ctenohystrica)". Zoological Journal of the Linnean Society. 172 (4): 942–963. doi: 10.1111/zoj.12201 . ISSN   0024-4082 via Oxford University Press.
  6. Martin, Thomas (1994). "African origin of caviomorph rodents is indicated by incisor enamel microstructure". Paleobiology. 20 (1): 5–13. Bibcode:1994Pbio...20....5M. doi:10.1017/S009483730001109X. ISSN   0094-8373. S2CID   89551027.
  7. Bromley, D.; Osborne, T. (1994). "Porcupine: Alaska Wildlife Notebook Series". Alaska Dept. of Fish and Game. Archived from the original on April 30, 2009. Retrieved 2009-05-10.
  8. Concise Oxford English dictionary (12th ed.). New York, NY: Oxford University Press. 2011. ISBN   978-0199601080.
  9. "A coat of many quills". Canadian Forestry Association. Archived from the original on March 18, 2006.{{cite web}}: CS1 maint: unfit URL (link)
  10. "Porcupine (Erethizon dorsatum)". The Natural Source: An Educator's Guide to South Dakota's Natural Resources. Archived from the original on 2013-01-12. Retrieved 2013-01-01.
  11. "Fort Resolution Chipewyan Dictionary" (PDF). 22 January 2011. p. 40. Archived from the original (PDF) on 4 April 2023. Retrieved 21 December 2012.
  12. Wood, Albert E. (25 November 1949). "Porcupines, Paleogeography, and Parallelism". Society for the Study of Evolution. 4 (1): 87–98. doi:10.2307/2405536. JSTOR   2405536.
  13. Wilson, D. E.; Reeder, D. M., eds. (2005). Mammal Species of the World: A Taxonomic and Geographic Reference (3rd ed.). Johns Hopkins University Press. ISBN   978-0-8018-8221-0. OCLC   62265494.
  14. Weber, Christopher; Myers, P. (2004). "Erethizon dorsatum". Animal Diversity Web. University of Michigan Museum of Zoology. Retrieved 2009-05-10.
  15. Fournier, F., & Thomas, D. W. (1997). Nitrogen and energy requirements of the North American porcupine (Erethizon dorsatum). Physiological zoology, 70(6), 615-620.
  16. DeMatteo, K. E., & Harlow, H. J. (1997). Thermoregulatory responses of the North American porcupine (Erethizon dorsatum bruneri) to decreasing ambient temperature and increasing wind speed. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 116(3), 339-346.
  17. 1 2 Roze, Uldis (2009). The North American Porcupine. Cornell University Press. ISBN   978-0-8014-4646-7.
  18. Roze, Uldis (2002). "A facilitated release mechanism for quills of the North American porcupine (Erethizon dorsatum)". Journal of Mammalogy. 83 (2): 381–385. doi: 10.1644/1545-1542(2002)083<0381:afrmfq>2.0.co;2 .
  19. Roze, Uldis (March 2006). "Smart Weapons — With an arsenal of quills and chemicals, the porcupine mounts one of nature's most robust defenses against predators". Natural History Magazine.
  20. Li, Guang; Roze, Uldis; Locke, David C. (December 1997). "Warning Odor of the North American Porcupine(Erethizon dorsatum)". Journal of Chemical Ecology. 23 (12): 2737–2754. Bibcode:1997JSP....23.2737L. doi:10.1023/A:1022511026529. S2CID   36405223.
  21. Osburn, D. J., & Cramer, M. J. (2013). Foraging response of Erethizon dorsatum and Lepus americanus to specialized and generalized predator scents. The American Midland Naturalist, 169(1), 66-73.
  22. Kukka, P. M., & Jung, T. S. (2015). The cost of a prickly diet: incidents of porcupine (Erethizon dorsatum) quills embedded in Wolverine (Gulo gulo). The Canadian Field-Naturalist, 129(3), 273-276.
  23. Wobeser, G. (1992). Traumatic, degenerative, and developmental lesions in wolves and coyotes from Saskatchewan. Journal of Wildlife Diseases, 28(2), 268-275.
  24. Brown, D. E., & Babb, R. D. (2009). Status of the Porcupine (Erithizon dorsatuh) in Arizona, 2000–2007. Journal of the Arizona-Nevada Academy of Science, 41(2), 36-41.
  25. 1 2 Sweitzer, R. A., Jenkins, S. H., & Berger, J. (1997). Near‐Extinction of Porcupines by Mountain Lions and Consequences of Ecosystem Change in the Great Basin Desert. Conservation Biology, 11(6), 1407-1417.
  26. 1 2 Eifrig, H (1909). Great horned owl versus porcupine. Auk. pp. 58–59.
  27. "Porcupine: Erethizon dorsatum bruneri Swenk". Mammals of Kansas. 2002. Archived from the original on August 14, 2006.
  28. 1 2 Olendorff, R. R. (1976). The food habits of North American golden eagles. American Midland Naturalist. pp. 231–236.
  29. Mabille, G., Descamps, S., & Berteaux, D. (2010). Predation as a probable mechanism relating winter weather to population dynamics in a North American porcupine population. Population ecology, 52(4), 537-546.
  30. Lima, S. L. (1992, January). Life in a multi-predator environment: some considerations for anti-predatory vigilance. In Annales Zoologici Fennici (pp. 217-226). Finnish Zoological Publishing Board.
  31. Powell, Roger A. (November 1993). The Fisher: Life History, Ecology, and Behavior. University of Minnesota Press. pp. 134–6. ISBN   978-0-8166-2266-5.
  32. Coulter, M.W. (1966). Ecology and management of fishers in Maine. (Ph.D. thesis). Syracuse, N.Y.: St. Univ. Coll. Forest. Syracuse University.
  33. "Ecological Characteristics of Fishers in the Southern Oregon Cascade Range" (PDF). USDA Forest Service – Pacific Northwest Research Station 2006.
  34. Zielinski, W. J., Duncan, N. P., Farmer, E. C., Truex, R. L., Clevenger, A. P., & Barrett, R. H. (1999). Diet of fishers (Martes pennanti) at the southernmost extent of their range. Journal of Mammalogy, 80(3), 961-971.
  35. Sweitzer, R. A., & Berger, J. (1992). Size‐Related Effects of Predation on Habitat Use and Behavior of Porcupines (Erethizon dorsatum). Ecology, 73(3), 867-875.
  36. Elbroch, L. M., Hoogesteijn, R., & Quigley, H. (2016). Cougars (Puma concolor) Killed by North American Porcupines (Erethizon dorsatum). The Canadian Field-Naturalist, 130(1), 53-55.
  37. Elbroch, L. M., Feltner, J., & Quigley, H. B. (2017). Stage‐dependent puma predation on dangerous prey. Journal of Zoology, 302(3), 164-170.
  38. Roze, Uldis (2012). Porcupines: The Animal Answer Guide. JHU Press. p. 100. ISBN   978-1-4214-0735-7.
  39. Müller-Schwarze, Dietland & Sun, Lixing (2003). The Beaver: Natural History of a Wetlands Engineer. Cornell University Press. p. 80. ISBN   978-0-8014-4098-4.
  40. Koprowski, John L. (2 December 1994). "Sciurus carolinensis" (PDF). Mammalian Species (480): 1–9. doi:10.2307/3504224. JSTOR   3504224. Archived from the original (PDF) on 27 March 2014. Retrieved 2014-03-26.
  41. Roze, Uldis (2012). Porcupines: The Animal Answer Guide. JHU Press. p. 109. ISBN   978-1-4214-0735-7.
  42. Mabille, Géraldine; Descamps, Sébastien; Berteaux, Dominique (March 11, 2010). "Predation as a probable mechanism relating winter weather to population dynamics in a North American porcupine population". Population Ecology. 52 (4): 537–546. Bibcode:2010PopEc..52..537M. doi:10.1007/s10144-010-0198-5. S2CID   27888886.
  43. Kalinowski, Tom (14 May 2017). "Porcupines And Their Need For Salt -". The Adirondack Almanack. Retrieved 15 March 2018.
  44. "Porcupine Country". Section Hikers Backpacking Blog. 13 June 2008. Retrieved 15 March 2018.
  45. "Got Pests?". maine.gov. Retrieved 15 March 2018.
  46. Emmons, L. (2016). "Erethizon dorsatum". IUCN Red List of Threatened Species . 2016: e.T8004A22213161. Retrieved 2023-01-22.
  47. "Endangered Animal Fact Sheet — North American Porcupine". July 2015.
  48. "Rare, Threatened, and Endangered Animals of Maryland" (PDF). Maryland Wildlife and Heritage Service Natural Heritage Program. April 2010. Archived from the original (PDF) on 2011-04-19.
  49. List, Rurik; Ceballos, Gerardo; Pacheco, Jesús (September 1999). "Status of the North American Porcupine (Erethizon dorsatum) in Mexico". The Southwestern Naturalist. 44 (3). Southwestern Naturalist Society: 400–404. JSTOR   30055242.

Further reading