PRPF8

Last updated
PRPF8
Protein PRPF8 PDB 3E9L.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases PRPF8 , pre-mRNA processing factor 8, HPRP8, PRP8, PRPC8, RP13, SNRNP220
External IDs OMIM: 607300 MGI: 2179381 HomoloGene: 4706 GeneCards: PRPF8
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_006445

NM_138659

RefSeq (protein)

NP_006436

NP_619600

Location (UCSC) Chr 17: 1.65 – 1.68 Mb Chr 11: 75.38 – 75.4 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Pre-mRNA-processing-splicing factor 8 is a protein that in humans is encoded by the PRPF8 gene. [5] [6]

Function

Pre-mRNA splicing occurs in 2 sequential transesterification steps. The protein encoded by this gene is a component of both U2- and U12-dependent spliceosomes, and found to be essential for the catalytic step II in pre-mRNA splicing process. It contains several WD repeats, which function in protein-protein interactions. This protein has a sequence similarity to yeast Prp8 protein. This gene is a candidate gene for autosomal dominant retinitis pigmentosa. [7]

Interactions

PRPF8 has been shown to interact with WDR57 [8] [9] and EFTUD2. [9]

Related Research Articles

<span class="mw-page-title-main">Spliceosome</span> Molecular machine that removes intron RNA from the primary transcript

A spliceosome is a large ribonucleoprotein (RNP) complex found primarily within the nucleus of eukaryotic cells. The spliceosome is assembled from small nuclear RNAs (snRNA) and numerous proteins. Small nuclear RNA (snRNA) molecules bind to specific proteins to form a small nuclear ribonucleoprotein complex, which in turn combines with other snRNPs to form a large ribonucleoprotein complex called a spliceosome. The spliceosome removes introns from a transcribed pre-mRNA, a type of primary transcript. This process is generally referred to as splicing. An analogy is a film editor, who selectively cuts out irrelevant or incorrect material from the initial film and sends the cleaned-up version to the director for the final cut.

<span class="mw-page-title-main">U4 spliceosomal RNA</span> Non-coding RNA component of the spliceosome

The U4 small nuclear Ribo-Nucleic Acid is a non-coding RNA component of the major or U2-dependent spliceosome – a eukaryotic molecular machine involved in the splicing of pre-messenger RNA (pre-mRNA). It forms a duplex with U6, and with each splicing round, it is displaced from the U6 snRNA in an ATP-dependent manner, allowing U6 to re-fold and create the active site for splicing catalysis. A recycling process involving protein Brr2 releases U4 from U6, while protein Prp24 re-anneals U4 and U6. The crystal structure of a 5′ stem-loop of U4 in complex with a binding protein has been solved.

<span class="mw-page-title-main">U6 spliceosomal RNA</span>

U6 snRNA is the non-coding small nuclear RNA (snRNA) component of U6 snRNP, an RNA-protein complex that combines with other snRNPs, unmodified pre-mRNA, and various other proteins to assemble a spliceosome, a large RNA-protein molecular complex that catalyzes the excision of introns from pre-mRNA. Splicing, or the removal of introns, is a major aspect of post-transcriptional modification and takes place only in the nucleus of eukaryotes.

<span class="mw-page-title-main">PRPF31</span> Protein-coding gene in the species Homo sapiens

PRP31 pre-mRNA processing factor 31 homolog , also known as PRPF31, is a protein which in humans is encoded by the PRPF31 gene.

<span class="mw-page-title-main">PRPF3</span> Protein-coding gene in the species Homo sapiens

U4/U6 small nuclear ribonucleoprotein Prp3 is a protein that in humans is encoded by the PRPF3 gene.

<span class="mw-page-title-main">ASCC3L1</span> Protein-coding gene in the species Homo sapiens

U5 small nuclear ribonucleoprotein 200 kDa helicase is an enzyme that in humans is encoded by the SNRNP200 gene.

<span class="mw-page-title-main">SF3A2</span> Protein-coding gene in the species Homo sapiens

Splicing factor 3A subunit 2 is a protein that in humans is encoded by the SF3A2 gene.

<span class="mw-page-title-main">SF3B2</span> Protein-coding gene in the species Homo sapiens

Splicing factor 3B subunit 2 is a protein that in humans is encoded by the SF3B2 gene.

<span class="mw-page-title-main">SF3B3</span> Protein-coding gene in the species Homo sapiens

Splicing factor 3B subunit 3 is a protein that in humans is encoded by the SF3B3 gene.

<span class="mw-page-title-main">PRPF6</span> Protein-coding gene in the species Homo sapiens

Pre-mRNA-processing factor 6 is a protein that in humans is encoded by the PRPF6 gene.

<span class="mw-page-title-main">EFTUD2</span> Protein-coding gene in the species Homo sapiens

116 kDa U5 small nuclear ribonucleoprotein component is a protein that in humans is encoded by the EFTUD2 gene.

<span class="mw-page-title-main">PRPF4</span> Protein-coding gene in the species Homo sapiens

U4/U6 small nuclear ribonucleoprotein Prp4 is a protein that in humans is encoded by the PRPF4 gene. The removal of introns from nuclear pre-mRNAs occurs on complexes called spliceosomes, which are made up of 4 small nuclear ribonucleoprotein (snRNP) particles and an undefined number of transiently associated splicing factors. PRPF4 is 1 of several proteins that associate with U4 and U6 snRNPs.[supplied by OMIM]

<span class="mw-page-title-main">SF3B14</span> Protein-coding gene in the species Homo sapiens

Splicing factor 3B, 14 kDa subunit, also known as SF3B14, is a human gene.

<span class="mw-page-title-main">WDR57</span> Protein-coding gene in the species Homo sapiens

WD repeat domain 57 , also known as WDR57, is a gene found in many organisms, including, but not limited to Homo sapiens, Gallus gallus, Pan troglodytes, Canus familiaris, Bos taurus, Mus musculus, and Rattus norvegicus.

<span class="mw-page-title-main">RP9</span> Protein-coding gene in the species Homo sapiens

Retinitis pigmentosa 9 (autosomal dominant), also known as RP9 or PAP-1, is a protein which in humans is encoded by the RP9 gene.

<span class="mw-page-title-main">PPIH</span> Protein-coding gene in the species Homo sapiens

Peptidyl-prolyl cis-trans isomerase H is an enzyme that in humans is encoded by the PPIH gene.

<span class="mw-page-title-main">DDX23</span> Protein-coding gene in humans

Probable ATP-dependent RNA helicase DDX23 is an enzyme that in humans is encoded by the DDX23 gene.

<span class="mw-page-title-main">DDX46</span> Protein-coding gene in the species Homo sapiens

Probable ATP-dependent RNA helicase DDX46 is an enzyme that in humans is encoded by the DDX46 gene.

<span class="mw-page-title-main">Prp8</span>

Prp8 refers to both the Prp8 protein and Prp8 gene. Prp8's name originates from its involvement in pre-mRNA processing. The Prp8 protein is a large, highly conserved, and unique protein that resides in the catalytic core of the spliceosome and has been found to have a central role in molecular rearrangements that occur there. Prp8 protein is a major central component of the catalytic core in the spliceosome, and the spliceosome is responsible for splicing of precursor mRNA that contains introns and exons. Unexpressed introns are removed by the spliceosome complex in order to create a more concise mRNA transcript. Splicing is just one of many different post-transcriptional modifications that mRNA must undergo before translation. Prp8 has also been hypothesized to be a cofactor in RNA catalysis.

<span class="mw-page-title-main">Kiyoshi Nagai</span> Japanese structural biologist (1949–2019)

Kiyoshi Nagai was a Japanese structural biologist at the MRC Laboratory of Molecular Biology Cambridge, UK. He was known for his work on the mechanism of RNA splicing and structures of the spliceosome.

References

  1. 1 2 3 ENSG00000174231 GRCh38: Ensembl release 89: ENSG00000274442, ENSG00000174231 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000020850 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. McKie AB, McHale JC, Keen TJ, Tarttelin EE, Goliath R, van Lith-Verhoeven JJ, Greenberg J, Ramesar RS, Hoyng CB, Cremers FP, Mackey DA, Bhattacharya SS, Bird AC, Markham AF, Inglehearn CF (Jul 2001). "Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13)". Human Molecular Genetics. 10 (15): 1555–62. doi:10.1093/hmg/10.15.1555. PMID   11468273.
  6. Luo HR, Moreau GA, Levin N, Moore MJ (Jul 1999). "The human Prp8 protein is a component of both U2- and U12-dependent spliceosomes". RNA. 5 (7): 893–908. doi:10.1017/S1355838299990520. PMC   1369814 . PMID   10411133.
  7. "Entrez Gene: PRPF8 PRP8 pre-mRNA processing factor 8 homolog (S. cerevisiae)".
  8. Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T, Figeys D (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry". Molecular Systems Biology. 3 (1): 89. doi:10.1038/msb4100134. PMC   1847948 . PMID   17353931.
  9. 1 2 Achsel T, Ahrens K, Brahms H, Teigelkamp S, Lührmann R (Nov 1998). "The human U5-220kD protein (hPrp8) forms a stable RNA-free complex with several U5-specific proteins, including an RNA unwindase, a homologue of ribosomal elongation factor EF-2, and a novel WD-40 protein". Molecular and Cellular Biology. 18 (11): 6756–66. doi:10.1128/mcb.18.11.6756. PMC   109259 . PMID   9774689.

Further reading