Perito Moreno Glacier

Last updated

Perito Moreno Glacier
Perito Moreno Glacier Patagonia Argentina Luca Galuzzi 2005.JPG
The terminus of the glacier in Lago Argentino
Relief Map of Argentina.jpg
Red pog.svg
Coordinates 50°30′S73°08′W / 50.500°S 73.133°W / -50.500; -73.133
Area250 km2 (97 sq mi)
Length30 km (19 mi)
Width5 km (3 mi)
Thickness170 m (560 ft)
TerminusLago Argentino
StatusRetreating
Aerial view of the glacier, taken two weeks before the 2004 rupture SantaCruz-PeritoMoreno-P2140146b.jpg
Aerial view of the glacier, taken two weeks before the 2004 rupture

The Perito Moreno Glacier (Spanish : Glaciar Perito Moreno) is a glacier located in Los Glaciares National Park in southwest Santa Cruz Province, Argentina. It is one of the most important tourist attractions in the Argentine Patagonia.

Contents

The 250 km2 (97 sq mi) ice formation, 30 km (19 mi) in length, is one of 48 glaciers fed by the Southern Patagonian Ice Field located in the Andes system shared with Chile which has a small part of the origins of the glacier. [1] [2] This ice field is the world's third largest reserve of fresh water.

The Perito Moreno Glacier, located 78 kilometres (48 mi) from El Calafate, was named after the explorer Francisco Moreno, a pioneer who studied the region in the 19th century and played a major role in defending the territory of Argentina in the conflict surrounding the international border dispute with Chile.

Status

Since 2020 the glacier has been retreating on its northern front, possibly due to climate change. [3] It was previously one of the few unusual glaciers that maintained a state of equilibrium during the late 20th and early 21st centuries because it was accumulating mass at a rate similar to that of its loss. [4] The reason for its unusually long period of stability remains debated by glaciologists. [5]

The terminus of the Perito Moreno Glacier is 5 km (3.1 mi) wide, with an average height of 74 m (240 ft) above the surface of the water of Argentino Lake, in Argentina. It has a total ice depth of 170 metres (558 ft).

History

In 1879, the British Chilean Navy captain, Juan Tomás Rogers, [ citation needed ] was the first non-indigenous person to sight the majestic glacier which he named "Francisco Gormaz", after the Director of the Hydrographic Office of the Chilean Navy, sponsoring organization of the discovering expedition. Some years later, Rudolph Hauthal, attached to the Argentine Boundary Commission, saw the glacier and decided to name it "Bismarck" in honor of the Prussian Chancellor.[ citation needed ]

In 1881, the Boundary Treaty between Chile and Argentina was signed, which defined the boundaries of both countries in the Andes mountain range up to the 52nd parallel. The glacier is east of the Andes Mountains and empties into Lake Argentino, which also is under Argentine sovereignty. Before the treaty, the area was in dispute between both countries. [ citation needed ]

Finally, in 1899, after long years of research, compilation of archaeological material, and surveys of the area, Lieutenant Iglesias, who was in charge of the studies for the Argentine Hydrographic Institute, named the glacier Perito Moreno in homage to Francisco Moreno. [6]

Rupture

A glacier cave at the edge of the glacier 153 - Glacier Perito Moreno - Grotte glaciaire - Janvier 2010.jpg
A glacier cave at the edge of the glacier

Pressure from the weight of the ice slowly pushes the glacier over the inner fjord of Lake Argentino reaching the coast of Península de Magallanes and bisecting the lake at an area called the Brazo Rico (Rico Arm) on one side and the Canal de los Témpanos (Iceberg Channel) on the other. With no outlet, the water level on the Brazo Rico side of the lake can rise by as much as 30 meters above the level of the main body of Argentino Lake. Intermittently, the pressure produced by the height of the dammed water breaks through the ice barrier causing a spectacular rupture, sending a massive outpouring of water from the Brazo Rico section to the main body of Lake Argentino and the Santa Cruz river. As the water exits Brazo Rico, the scored shoreline is exposed, showing evidence of the height of the water build-up. This damice-bridgerupture cycle recurs naturally between once a year to less than once every decade. [7]

The glacier advances between June and December and recedes between December and April. The formation of an ice barrier is a complex process, since there is a feedback mechanism between the glacier and the lake, which affects the oscillations of the position of the glacial front in a fairly stable way. [8]

Different behaviors have been observed during the filling and in the processes of discharge of the water, which have been classified into three types: sudden, progressive and minor burst. In a sudden type event, the maximum discharge can reach 8000 m³ per second, while a smaller event only evacuates 123 m³. [8]

The ruptures do not have a specific frequency. Traditionally it was estimated one every three or four years, but there have been times where they happened in shorter periods and others in which it did not occur for many years, causing fears that the phenomenon might possibly have stopped occurring. [8]

The ruptures occurred in the years, 1917, 1935, 1940, 1942, 1947, 1952, 1953, 1956, 1960, 1963, 1966, 1970, 1972, 1975, 1977, 1980, 1984, 1988, 2004, 2006, 2008, 2012, 2013 (two events, one in January and one in December), 2016, [9] 2018 [9] and 2019.

Glacier calving Perito Moreno Glacier ice fall.jpg
Glacier calving

The first recorded rupture (1917)

Evidence from tree rings on the shorelines indicates that there were no major damming and rupture events of the Brazo Rico from about 1635 until the 20th century. [10] The front of the glacier began to move towards the opposite bank at the end of the 19th century. In 1899 it was 750 meters from the Magallanes peninsula. In the first five years of the twentieth century it continued its progression, managing to close its arm for the first time in 1917, followed by the first break. [11]

Sudden discharge ruptures

In the 21st century, the events of 2004, 2006, 2008 and 2012 are classified as sudden download events. [8]

In 2004, the peak level of the dammed lake was 10.5 m [12] and discharge flow peak had a value of 5000 m³ / s, finishing with matching lake levels after four days. [13] It was estimated that 10,000 tourists watched this event. [12] In 2006 the level difference reached by the Rico arm was 5.4 m and on 10 March, the retained water began to escape, which caused the dike to collapse on the 13th. The discharge rate rose to 5850 m³ / s, concluding the discharge period on March 14, when the levels of the Rico arm matched the rest of the lake. In the 2008 event, the discharge flow had a peak value of 8000 m³ / s, finishing with matching lake levels after about four days. At the 2012 event, the discharge flow peak had a value lower than the previous ones, 2000 m³ / s, so it took longer to evacuate the accumulated water, concluding only after 14 days. [8]

Progressive discharge ruptures

In progressive unloading events the whole process slows down, although an ice set-up occurs.

In the southern summer of 2013 there was an event of this type. By September 9, 2012, the front of the glacier had shortened the distance that separated it from the coast of the Magallanes peninsula to only 30 meters, which had caused the Rico arm to accumulate water, reaching a maximum level of 2.2 m on November 21, when the water managed to overcome the ice wall by opening a subglacial tunnel, beginning the discharge process. Tunnel formation was visible directly on day 26 and subsequently the tunnel collapsed. On February 4, 2013, the discharge flow reached a maximum value: 205 m³ / s. The discharge continued, albeit in a very slow way, as a result of new semi-clogging, so it was just completed, when both levels were the same, 85 days after it started. The distance between the glacier wall and the peninsula was over 100 m towards the beginning of March. At the end of December 2013 there was another event of the progressive type with similar characteristics to what had happened the previous year. The level of Lake Rico reached a difference of 3.7 m and the evacuation of the liquid lasted 65 days, reaching a maximum discharge flow of 220 m³ / s. [8]

Minor discharge ruptures

Crevasse in Perito Moreno Glacier, 1994 PeritoMoreno003.jpg
Crevasse in Perito Moreno Glacier, 1994

Occasionally, the glacial front does not completely obstruct the natural passage of water with an ice dam, but it approaches close enough to prevent water from passing freely, so without reaching elevation, an arm cut in Rico occurs. These events are classified as minor downloads.[ citation needed ] This is what happened in October 1996, when the Rico arm rose about a meter. At the end of that month the water pressure opened a greater passage in the walls of the glacial front and the discharge began, but slowly, since the passage had not been sufficiently open, so the maximum peak of the discharge flow occurred at the end of January with a value of 123 m³ / s, the dimensions being equalized on both sides only at the beginning of April.8 The events of 1994, 1995 and 1997 show similar behavior and magnitudes to those of 1996.[ citation needed ]

The phenomenon was presented again in 1935. At the close of 1939, due to the flooding caused by the embalmed waters, which affected numerous agricultural establishments, and without even glimpsing the economic value that from the point of view this natural event could represent tourism, the Argentine Navy Ministry launched explosives on the ice indication, unable to obtain the intended result of artificially consolidating a gap for the evacuation of water. The break occurred naturally in February of the following year. In 1952 the closure produced a flooded area of 6670 ha; It affected fields of crops and livestock, but not buildings.[ citation needed ]

The rupture of 1966 was the one that produced one of the largest volumes of water evacuated by the Santa Cruz River, which exceeded 2000 m³ per second, measured at the Charles Fuhr capacity station.[ citation needed ]

Tourism

Perito Moreno Glacier trekking Perito Moreno glacier trekking.JPG
Perito Moreno Glacier trekking

Due to its size and accessibility, Perito Moreno is one of the major tourist attractions in southern Patagonia and the rupture of this glacier is considered one of the most impressive natural spectacles in the world.[ citation needed ] The rupture events benefit the area by producing enormous international visibility, which translates into sources of income for the region's growing tourism development, which has its support base in the city of El Calafate. The city has an international airport, with many tour companies running daily tours. [14] A large visitor centre at the site features a walking circuit which allows visitors to view the southern flank and the east-facing edge of the glacier.[ citation needed ] In recent years, trekking tours on the ice have gained popularity. The two standard tours are a "mini-trekking" option, consisting of a short walk of about an hour and a half, and a "big ice" version, which is usually about five hours. Tour companies generally provide crampons to customers. [15] As the Zone closes to the public during the night - after 8 pm - on some occasions the ice bridge collapses without spectators, as happened in the event of March 11, 2018. [9]

Panoramic view of the glacier taken from the walkway next to the visitor center Perito Moreno Glacier panorama.jpg
Panoramic view of the glacier taken from the walkway next to the visitor center

Fauna

A small glacier stonefly called Andiperla willinki inhabits the glacier. [16] Also called "the pearl of the Andes" or "dragon of Patagonia" is a kind of plecoptera of the family Gripopterygidae that inhabits the Patagonian glaciers in Argentina and Chile, spending its entire life on the ice. It measures approximately 1.5 cm (0.59 in) and feeds on bacteria that live on the ice brought by the wind.

It was found on the Upsala Glacier and described by Aubert Willink in 1956. [17] Due to its rarity, small size, and extreme habitat, they believed it had become extinct. However, it was rediscovered in 2001 in a Torres del Paine glacier in a 20 m deep recess; on this occasion, it was named by the crew as "Patagonian dragon".

Related Research Articles

<span class="mw-page-title-main">Santa Cruz Province, Argentina</span> Province of Argentina

Santa Cruz Province is a province of Argentina, located in the southern part of the country, in Patagonia. It borders Chubut Province to the north, and Chile to the west and south, with an Atlantic coast on its east. Santa Cruz is the second-largest province of the country, and the least densely populated in mainland Argentina.

<span class="mw-page-title-main">Proglacial lake</span> Lake formed by the action of ice

In geology, a proglacial lake is a lake formed either by the damming action of a moraine during the retreat of a melting glacier, a glacial ice dam, or by meltwater trapped against an ice sheet due to isostatic depression of the crust around the ice. At the end of the last ice age about 10,000 years ago, large proglacial lakes were a widespread feature in the northern hemisphere.

<span class="mw-page-title-main">Los Glaciares National Park</span> National park in the Santa Cruz Province of Argentina

Los Glaciares National Park is a federal protected area in Santa Cruz Province, Argentina.

<span class="mw-page-title-main">Moraine-dammed lake</span> Type of lake formed by glaciation

A moraine-dammed lake, occurs when the terminal moraine has prevented some meltwater from leaving the valley. When a glacier retreats, there is a space left over between the retreating glacier and the piece that stayed intact which holds leftover debris (moraine). Meltwater from both glaciers seep into this space creating a ribbon-shaped lake due to the pattern of ice melt. This ice melt may cause a glacier lake outburst flood, leading to severe damage to the environment and communities nearby. Examples of moraine-dammed lakes include:

<span class="mw-page-title-main">Francisco Moreno</span> Argentine explorer

Francisco Pascasio Moreno was a prominent explorer and academic in Argentina, where he is usually referred to as Perito Moreno. Perito Moreno has been credited as one of the most influential figures in the Argentine incorporation of large parts of Patagonia and its subsequent development.

<span class="mw-page-title-main">Fitz Roy</span> Mountain in the Southern Andes; part of the Argentina-Chile border

Monte Fitz Roy is a mountain in Patagonia, on the border between Argentina and Chile. It is located in the Southern Patagonian Ice Field, near El Chaltén village and Viedma Lake. It was first climbed in 1952 by French alpinists Lionel Terray and Guido Magnone.

<span class="mw-page-title-main">El Chaltén</span> Place in Santa Cruz, Argentina

El Chaltén is a small mountain village in Santa Cruz Province, Argentina. It is located on the riverside of Rio de las Vueltas, within the Los Glaciares National Park near the base of Cerro Torre and Cerro Fitz Roy spires, both popular for climbing. It is 220 km north of El Calafate. It is also a popular base for hiking numerous trails, such as those to the base of surrounding peaks and glacial lakes, such as Laguna Torre and Laguna de los Tres.

<span class="mw-page-title-main">Argentino Lake</span> Glacial lake in the Patagonian province of Santa Cruz, Argentina

Lago Argentino is a lake in the Patagonian province of Santa Cruz, Argentina, at 50°2′S72°4′W. It is the largest freshwater lake in Argentina, with a surface area of 1,415 km2 (546 sq mi). It has an average depth of 155 m (509 ft), and a maximum depth of 500 m (1,640 ft).

<span class="mw-page-title-main">El Calafate</span> City in Santa Cruz Province, Argentina

El Calafate, also known as Calafate, is a city in Patagonia, Argentina. It is situated on the southern border of Lake Argentino, in the southwest part of the Santa Cruz Province, about 320 kilometres (200 mi) northwest of Río Gallegos. The name of the city is derived from a little bush with yellow flowers and dark blue berries that is very common in Patagonia: the calafate ; the word comes from the word calafate, which is Spanish for 'caulk'.

<span class="mw-page-title-main">General Carrera Lake</span> Lake in Argentina and Chile

General Carrera Lake or Lake Buenos Aires is a deep lake located in Patagonia and shared by Argentina and Chile. Both names are internationally accepted, while the autochthonous name of the lake is Chelenko, which means "stormy waters" in Aonikenk. Another historical name is Coluguape from Mapuche, a derivative of this name is applied to Colhué Huapí Lake after Argentine explorer Francisco Moreno reached this lake in 1876 conflating it with Coluguape.

<span class="mw-page-title-main">O'Higgins/San Martín Lake</span> Lake in Argentina and Chile

The lake known as O'Higgins in Chile and San Martín in Argentina is located around coordinates 48°50′S72°36′W in Patagonia, between the Aysén del General Carlos Ibáñez del Campo Region and the Santa Cruz Province.

<span class="mw-page-title-main">Southern Patagonian Ice Field</span> An ice field in southern Chile and Argentina

The Southern Patagonian Ice Field, located at the Southern Patagonic Andes between Chile and Argentina, is the world's second largest contiguous extrapolar ice field. It is the bigger of two remnant parts of the Patagonian Ice Sheet, which covered all of southern Chile during the last glacial period, locally called the Llanquihue glaciation.

<span class="mw-page-title-main">Upsala Glacier</span>

The Upsala Glacier is a large valley glacier on the eastern side of the Southern Patagonian Ice Field. Its higher portion lies in a disputed territory between Chile and Argentina. While the glacier flows from north to south it has three lesser eastflowing tributary glacier: Bertacchi, Cono and Murallón.

<span class="mw-page-title-main">Zona Austral</span> Southernmost natural region of continental Chile

The Zona Austral is one of the five natural regions into which CORFO divided continental Chile in 1950 corresponding to the Chilean portion of Patagonia. It is surrounded by the Zona Sur and the Chacao Channel to the north, the Pacific Ocean and Drake's Passage to the south and west, and the Andean mountains and Argentina to the east. If excluding Chiloé Archipelago, Zona Austral covers all of Chilean Patagonia.

<span class="mw-page-title-main">Viedma Glacier</span>

Viedma Glacier is a large glacier that is part of the huge Southern Patagonian Ice Field, located at the southern end of mainland South America. Viedma Glacier is a valley glacier and its moraine-rich terminus flows into the western end of Lake Viedma, which is fed primarily by its melting ice. Viedma Glacier is located in the undefined part of the limit between Chile and Argentina, in Argentinian legislature it is in Los Glaciares National Park which was declared a World Heritage Site in 1981. in Chilean legislature part of it is in Bernardo O'Higgins National Park. The Southern Patagonian Ice Field is 13,000 square kilometres (5,000 sq mi); Viedma Glacier is one of the Ice Field's 48 outlet glaciers that have more than 20 square kilometres (7.7 sq mi) of ice field area each.

<span class="mw-page-title-main">Nahuel Huapi National Park</span> National park in Argentina

Nahuel Huapi National Park is the oldest national park in Argentina, established in 1922 as Parque Nacional de Sud and reconfiguered in 1934. It surrounds Nahuel Huapi Lake in the foothills of the Patagonian Andes. The largest of the national parks in the region, it has an area of 7,050 km2 (2,720 sq mi), or nearly 2 million acres. Its landscapes represent the north Patagonian Andean Zone consisting of three types, namely, the Altoandino, the Andino-Patagónico and the Patagonian steppe. It also represents small parts of the Valdivian Rainforest.

<span class="mw-page-title-main">Exploradores Glacier</span>

The Exploradores Glacier is a glacier situated on the northeastern slope of Monte San Valentín, in the Aysén del General Carlos Ibáñez del Campo Region of Chile. The locality nearest to the glacier is Puerto Río Tranquilo, which is located on the western shore of General Carrera Lake.

Cerro Murallón is a glacier mountain of the Andes, in Patagonia, located on the eastern edge of the Southern Patagonian Ice Field, southwest of Lake Viedma, at the border between Chile and Argentina.

Onelli Bay is a bay of Argentino Lake, Santa Cruz Province, Argentina, within Los Glaciares National Park. It is made up of a Patagonian forest and a tributary of Lake Onelli flows into it, into which the Onelli, Agassiz, Bolados and Heim Glaciers also flow.

<span class="mw-page-title-main">Southern Patagonian Ice Field dispute</span> Boundary conflict between Chile and Argentina

The Southern Patagonian ice field dispute is a border dispute between Argentina and Chile over the delineation of the boundary line between the two countries on the Southern Patagonian Ice Field, a large expanse of glaciers located in the Patagonian Andes, which is the largest non-polar continental ice field with land access. It is called continental ice in Argentina and southern ice field in Chile, to differentiate it from the northern ice field. As of 2023, the Argentine-Chilean border in this sector is still pending of definition according to the 1998 agreement signed by both countries. The original border was defined 100 years prior on October 1st, 1898 by experts from both countries.

References

  1. Inventario Nacional de Glaciares
  2. Acuerdo para precisar el recorrido del Límite desde el Monte Fitz Roy hasta el Cerro Daudet (1998)
  3. Domínguez, Soledad (3 December 2023). "Argentina's ice giant shows signs of setbacks". El País . Retrieved 11 March 2024.
  4. Aniya, Masamu; Sato, Hiroaki; Naruse, Renji; Skvarca, Pedro; Casassa, Gino (February 1997). "Recent Glacier Variations in the Southern Patagonia Icefield, South America". Arctic and Alpine Research. 29 (1): 1–12. doi:10.2307/1551831. ISSN   0004-0851. JSTOR   1551831.
  5. "Mystery Glaciers Growing as Most Others Retreat". News.nationalgeographic.com. 22 June 2009. Archived from the original on 28 January 2017. Retrieved 22 March 2017.
  6. History of the Perito Moreno Glacier - Argentina Tourism
  7. "Los Glaciares National Park". whc.unesco.org. UNESCO . Retrieved 21 August 2017.
  8. 1 2 3 4 5 6 Lenzano, María G.; Lannutti, Esteban; Toth, Charles; Lenzano, Luis; Lo Vecchio, Andrés; Falaschi, Daniel; Vich, Alberto (February 2018). "Analyzing the oscillations of the Perito Moreno Glacier, using time-lapse image sequences". Cold Regions Science and Technology. 146: 155–166. doi:10.1016/j.coldregions.2017.11.015. ISSN   0165-232X.
  9. 1 2 3 Gibbens, Sarah (13 March 2018). "Why This Massive Glacial Arch Collapses Like Clockwork". National Geographic Travel. Retrieved 22 September 2019.
  10. Guerrido, Claudia M; Villalba, Ricardo; Rojas, Facundo (6 October 2014). "Documentary and tree-ring evidence for a long-term interval without ice impoundments from Glaciar Perito Moreno, Patagonia, Argentina". The Holocene. 24 (12): 1686–1693. Bibcode:2014Holoc..24.1686G. doi:10.1177/0959683614551215. hdl: 11336/32216 . ISSN   0959-6836. S2CID   129908517.
  11. Domcke, Hans (1972), "Rechtsfragen aus der Arbeit des Deutschen Alpenvereins", Sport und Recht, De Gruyter, doi:10.1515/9783110890204.129, ISBN   9783110890204
  12. 1 2 Chinni, Guillermo A.; Warren, Charles R. (2004). "The 2004 outburst flood at Glaciar Perito Moreno, Argentina". Journal of Glaciology. 50 (171): 615–616. Bibcode:2004JGlac..50..615C. doi: 10.3189/172756504781829792 . ISSN   0022-1430. S2CID   128894463.
  13. Skvarca, Pedro; Naruse, Renji (2006). "Overview of the ice-dam formation and collapse of Glaciar Perito Moreno, southern Patagonia, in 2003/04". Journal of Glaciology. 52 (177): 318–320. Bibcode:2006JGlac..52..318S. doi: 10.3189/s0022143000208666 . ISSN   0022-1430.
  14. "El Calafate Travel Guide: Most Important Information". Say Hueque. Retrieved 21 December 2021.
  15. "Perito Moreno Trekking- Argentina Travel Blog". Say Hueque. 4 October 2010. Retrieved 21 December 2021.
  16. "species Andiperla willinki Aubert, 1956: Plecoptera Species File". plecoptera.speciesfile.org. Retrieved 4 September 2019.
  17. Aubert, Jacques (1956). "Andiperla willinki n. sp, Plécoptère nouveau des Andes de Patagonie". Schweizerische Entomologische Gesellschaft. doi:10.5169/seals-401273.