Phosphoenolpyruvate carboxykinase (diphosphate) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
EC no. | 4.1.1.38 | ||||||||
CAS no. | 2598306 | ||||||||
Databases | |||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB structures | RCSB PDB PDBe PDBsum | ||||||||
|
Phosphoenolpyruvate carboxykinase (diphosphate) (EC 4.1.1.38) is an enzyme with systematic name diphosphate:oxaloacetate carboxy-lyase (transphosphorylating; phosphoenolpyruvate-forming). [1] This enzyme catalyses the following chemical reaction
This enzyme also catalyses the reaction:
It is transcriptionally upregulated in the liver by glucagon.
The citric acid cycle —also known as the Krebs cycle, Szent-Györgyi-Krebs cycle or the TCA cycle (tricarboxylic acid cycle)—is a series of chemical reactions to release stored energy through the oxidation of acetyl-CoA derived from carbohydrates, fats, and proteins. The Krebs cycle is used by organisms that respire (as opposed to organisms that ferment) to generate energy, either by anaerobic respiration or aerobic respiration. In addition, the cycle provides precursors of certain amino acids, as well as the reducing agent NADH, that are used in numerous other reactions. Its central importance to many biochemical pathways suggests that it was one of the earliest components of metabolism. Even though it is branded as a 'cycle', it is not necessary for metabolites to follow only one specific route; at least three alternative segments of the citric acid cycle have been recognized.
Oxaloacetic acid (also known as oxalacetic acid or OAA) is a crystalline organic compound with the chemical formula HO2CC(O)CH2CO2H. Oxaloacetic acid, in the form of its conjugate base oxaloacetate, is a metabolic intermediate in many processes that occur in animals. It takes part in gluconeogenesis, the urea cycle, the glyoxylate cycle, amino acid synthesis, fatty acid synthesis and the citric acid cycle.
Phosphoenolpyruvate is the ester derived from the enol of pyruvate and phosphate. It exists as an anion. PEP is an important intermediate in biochemistry. It has the highest-energy phosphate bond found in organisms, and is involved in glycolysis and gluconeogenesis. In plants, it is also involved in the biosynthesis of various aromatic compounds, and in carbon fixation; in bacteria, it is also used as the source of energy for the phosphotransferase system.
Phosphoenolpyruvate carboxylase (also known as PEP carboxylase, PEPCase, or PEPC; EC 4.1.1.31, PDB ID: 3ZGE) is an enzyme in the family of carboxy-lyases found in plants and some bacteria that catalyzes the addition of bicarbonate (HCO3−) to phosphoenolpyruvate (PEP) to form the four-carbon compound oxaloacetate and inorganic phosphate:
Phosphoenolpyruvate carboxykinase is an enzyme in the lyase family used in the metabolic pathway of gluconeogenesis. It converts oxaloacetate into phosphoenolpyruvate and carbon dioxide.
Phosphoenolpyruvate carboxykinase (ATP) (EC 4.1.1.49, phosphopyruvate carboxylase (ATP), phosphoenolpyruvate carboxylase, phosphoenolpyruvate carboxykinase, phosphopyruvate carboxykinase (adenosine triphosphate), PEP carboxylase, PEP carboxykinase, PEPCK (ATP), PEPK, PEPCK, phosphoenolpyruvic carboxylase, phosphoenolpyruvic carboxykinase, phosphoenolpyruvate carboxylase (ATP), phosphopyruvate carboxykinase, ATP:oxaloacetate carboxy-lyase (transphosphorylating)) is an enzyme with systematic name ATP:oxaloacetate carboxy-lyase (transphosphorylating; phosphoenolpyruvate-forming). This enzyme catalyses the following chemical reaction
Malate dehydrogenase (decarboxylating) (EC 1.1.1.39) or NAD-malic enzyme (NAD-ME) is an enzyme that catalyzes the chemical reaction
In enzymology, a malate dehydrogenase (oxaloacetate-decarboxylating) (EC 1.1.1.38) is an enzyme that catalyzes the chemical reaction below
Malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+) (EC 1.1.1.40) or NADP-malic enzyme (NADP-ME) is an enzyme that catalyzes the chemical reaction in the presence of a bivalent metal ion:
Pyruvate, phosphate dikinase, or PPDK is an enzyme in the family of transferases that catalyzes the chemical reaction
Phytoene synthase is a transferase enzyme involved in the biosynthesis of carotenoids. It catalyzes the conversion of geranylgeranyl pyrophosphate to phytoene. This enzyme catalyses the following chemical reaction
Phenylalanine N-monooxygenase (EC 1.14.14.40, phenylalanine N-hydroxylase, CYP79A2) is an enzyme with systematic name L-phenylalanine,NADPH:oxygen oxidoreductase (N-hydroxylating). This enzyme catalyses the following chemical reaction
All-trans-decaprenyl-diphosphate synthase is an enzyme with systematic name (2E,6E)-farnesyl-diphosphate:isopentenyl-diphosphate farnesyltranstransferase . This enzyme catalyses the following chemical reaction
Pseudaminic acid synthase (EC 2.5.1.97, PseI, NeuB3) is an enzyme with systematic name phosphoenolpyruvate:2,4-bis(acetylamino)-2,4,6-trideoxy-beta-L-altropyranose transferase (phosphate-hydrolysing, 2,7-acetylamino-transferring, 2-carboxy-2-oxoethyl-forming). This enzyme catalyses the following chemical reaction
All-trans-phytoene synthase is an enzyme with systematic name geranylgeranyl-diphosphate:geranylgeranyl-diphosphate geranylgeranyltransferase . This enzyme catalyses the following chemical reaction
ent-Pimara-9(11),15-diene synthase is an enzyme with systematic name ent-copalyl-diphosphate diphosphate-lyase . This enzyme catalyses the following chemical reaction
Terpentetriene synthase is an enzyme with systematic name terpentedienyl-diphosphate diphosphate-lyase (terpentetriene-forming). This enzyme catalyses the following chemical reaction
(+)-Germacrene D synthase is an enzyme with systematic name (2E,6E)-farnesyl-diphosphate diphosphate-lyase ( -germacrene-D-forming). This enzyme catalyses the following chemical reaction
Halimadienyl-diphosphate synthase is an enzyme with systematic name halima-5,13-dien-15-yl-diphosphate lyase (decyclizing). This enzyme catalyses the following chemical reaction
3-Hydroxypropionyl-CoA synthase is an enzyme with systematic name hydroxypropionate:CoA ligase (AMP-forming). This enzyme catalyses the following chemical reaction