Polistes snelleni

Last updated

Polistes snelleni
Polistes snellen nest.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Hymenoptera
Family: Vespidae
Subfamily: Polistinae
Tribe: Polistini
Genus: Polistes
Species:
P. snelleni
Binomial name
Polistes snelleni
(de Saussure, 1862)
Synonyms [1]
  • Allorhynchium snelleni(Saussure, 1862)
  • Allorhynchium snelleni subsp. imitator Vecht, 1963)
  • Odynerus aurivillianus Schulthess, 1913
  • Polistes nigrihumerusUchida, 1936
  • Polistes nigrohumerusUchida, 1936

Polistes snelleni, the Japanese paper wasp, is a common social wasp species in central and northern Japan. [2] P. snelleni is also found in northern China, Korea, and the Russian Far East. Due to the different climates in these regions, P. snelleni is able to adapt to different temperatures and climatic conditions. [3] P. snelleni is typically found in hilly or submontane areas, so they are classified in the semi-highland category. [2]

Contents

Taxonomy and phylogeny

P. snelleni is in the genus Polistes , with the subgenus Polistella, a paraphyletic subgenus. P. snelleni is most closely related to Polistes stigma bernadii. It is also closely related to Polistes japonicus. [4] P. snelleni has been studied alongside Polistes chinensis , and Polistes biglumis for comparison in worker-worker conflict, which are two other paper wasps. [2] [5]

Description and identification

P. snelleni wasps are black and yellow. The queens are the biggest of the species, and the workers, young queens, and males follow. Workers typically have worn wings that distinguish them from young queens. [2] The weight of new reproductive females (young queens) is 102 mg. Workers can be identified by white-creamy body fat. Workers that have developed ovaries are workers, but not reproductive females. [5]

The nests created by P. snelleni are made vertically. [2] They typically consist of a single comb. [6] The comb is fan-shaped and the pedicel is attached to the basal cell. This setup allows new cells to be added distally. [3] The founding queen uses twigs or the surface of rock overhangs as horizontal supports for the nest. The nest petioles (stems) are perpendicular to these supports. These wasps occupy a vertical zone of 200–400 meters. [2]

Distribution and habitat

P. snelleni is typically found in Japan, and sometimes in China or Korea. [2] The species prefers grassy or bushy places in temperate areas. [5] Their nests are typically found on south-facing slopes in areas filled with small trees and short weeds. These nests are hung from small trees, oftentimes larch trees, and usually hang at about 20–60 cm above the ground. They also nest in roadsides and rocky cliffs, in the spaces under overhangs. The temperature in these sites rises in the daytime because the rocks absorb heat from the sun. [2]

Colony cycle

In northern Japan near Sapporo, nests are covered with snow until early April. About 2 weeks later, the single founding queen arrives to start the nest, falling under the category of haplometrotic foundation. The first worker in the nest emerges in early July, and all emerge within a couple of days. The workers are produced by eggs that were laid at the beginning of the nest formation. The incubation period is about 60 days for a worker. P. snelleni only has 5-15 workers in a single nest, proving to be one of the smallest in Japan. Males in P. snelleni emerge after workers, during a period of 1–2 weeks, in cells that are separated from those that produce workers. There are about 10-20 males in an average nest, which is only a bit more than the number of workers. Young queens (about 30-50) also come about during this time, in late July, in northern Japan. [2] In central Japan, the young queens come about a month later in the middle of August. [7] Reproductive females mate during the nesting season. [5] These young queens are particularly aggressive. It sometimes happens that there are dwarf queens that arise in the nest, that look vaguely like workers. These emerge in late August when only a few workers remain in the nest and the food supplies have dwindled. These dwarf queens have a low chance of mating because most of the males have died. Eggs and larvae disappear in middle and later August respectively. [2]

Construction of nest

The rate of construction of the nest begins as relatively high and then drops with the hatching of larvae. During this time, though, the founding queen only constructs about one-third of the total cells, and half of the cocoon spinning (10 cocoons total are made). [2] The queen uses pulp (paper) for construction, collected from outside the nest or by taking it from workers who have collected it. This is a forceful action (called robbing) by the founding queen, as the workers resist this. [7] Later, the rate of construction picks up again, in conjunction with the maturation of larvae and cocoon spinning by the founding queen. The rate then increases consistently until the sign of the first workers' arrival. During this time, prior to the first workers arrival, the queen successfully constructs more cells, leading to a total construction of about 70% of the nests total cells. The superindividual stage, where workers and the queen coexist harmoniously to meet the needs of the nest, lasts only about a week. Once the workers are hatched, the third peak in cell construction occurs, and about 15% of the cells are produced by workers that have had a few days to rest before working. [2]

Egg laying

The queen lays less than 1.5 eggs per day on average. She lays eggs parallel to the construction of the cells. She may lay two eggs in the same cell, even if other open cells are available; in this case, only one egg develops, but no more than 20% of the cells are empty at a time. [2] A queen does not reuse cells once an egg has occupied them. [7]

Behavior

Division of labor

The P.snelleni queens rise at sunrise and stop their activities at sunset. The queens begin their activities only when their body temperature is high enough from receiving sunbeams. This may not occur right at sunrise, but in the later months when the temperature is higher, the queen can start her activities earlier. [8] The behaviors of P. snelleni males and females are quite distinct. Males rest in the nest and beg the workers for food, occasionally visiting flowers. Females, though, have different behaviors. Females rarely leave the brood, only sometimes to bring water drops to ventilate the nest on hot days. Food regurgitation is observed among females. [2]

Water transport

P. snelleni exists in temperate locations, where cold and hot weather conditions can arise. When the temperature becomes hot, as it often does in Japan during the summer when the P. snelleni nests are active, the paper wasps need to take measures to cool down the nest. Water transport to the nest occurs after the appearance of larvae, and once it starts, occurs about 10-15 times in succession. Water drops are carried by the wasps and put on the concave nest roof. This aids in cooling the nest. When shade is over the nest, the wasps move the water and throw it away. [8]

Interaction with other species

Diet

The founding queen of a nest goes through the process of first hunting, then the disposition of prey, transport, another disposition, and then finally giving food to the larvae. The larvae are fed with animal diet. The queen finds the prey in a single flight from the nest that lasts usually 10–30 minutes. The queen sucks fluid from a pellet on the nest or nearby, and feeds it to the young larvae. The feeding is done by an antenna inserted in a cell where the larvae are. There is solid residual left from the pellet which the queen eats or throws out. When there are different ages of larvae present, the pellet is given to older larvae first and then the queen gives the leftover fluid to all the larvae, both young and old. [8]

Parasitoidism

P. snelleni is a host wasp for the parasitoid Elasmus japonicus , a smaller species of wasp. Adults of E. japonicus sit on leaves and twigs near the nests of P. snelleni, and fly around the nests. When P. snelleni notice that E. japonicus is near the nest, they flutter their wings and dart on the comb. Sometimes, P. snelleni bite and kill E. japonicus. P. snelleni recognize parasitized cells in their nests and host the remnants of the parasite there. It is beneficial for P. snelleni to kill the parasitoid larvae because adult E. japonicus could reparasitize the nest. [9]

Worker queen conflict

Orphan colonies

Orphan colonies are colonies that are maintained by workers after the queen is gone from the nest. [7] Orphaned workers have the ability to mate and produce female offspring, but they only begin to oviposit after the queen has disappeared. This is unique to P. snelleni. Orphaned workers can act essentially as replacement queens, because they can inhibit mating in other workers and founding queens. It has been said that P. snelleni goes by the mode of serial polygyny, however this was disproven because by the time new reproductive females are ready to reproduce, the season is ending. So, only a few queen replacements can occur. [5] There are usually 1-2 laying workers that are elderly in these orphan colonies. The dominant laying workers in a nest have a monopoly over ovipositions by selectively egg-eating. [7]

Conflict over egg laying

Since the founding queens of P. snelleni are likely to disappear, it is necessary that these orphaned workers have the ability to reproduce females for future generations to exist. There is social tension over reproduction between queens and workers because of this, where queens monopolize egg production while they are in the nest. [5]

Queens of P. snelleni produce males before females, which is called protandrous production. This is driven by sexual selection for the optimum sex ratio, and so there is a higher fitness for all. Because of protandrous production, orphaned workers are selected to produce female offspring, since they are reproducing so late in the season. They mate in order to make diploid female offspring. [5]

Colony productivity

Climate is a key factor that has been studied in the colony productivity of P. snelleni. Since there is always one founding queen in a P. snelleni nest, the denominator of colony productivity is always one. Productivity was found to vary drastically with a couple of very large nests that were found in Kanto, Japan. These nests had hundreds of cells in comparison to the usually 100 cells. In these nests, there was a female-biased sex ratio, which lines up with the resource availability hypothesis. This hypothesis states that colonies with better resources should be more heavily female based. The numbers of first brood workers in these nests were not greater than other nests, but there were a lot more females, so the sex ratio was heavily female. [3]

Special nests

A special-case nest observed in Mt. Hakken-zan in the summer of 1968 showed two queens sharing one nest. This nest was unsuccessful, as predicted. Whether the nest was an instance of temporary pleometrosis, where two queens cooperate in the initial stages of nest building, and then one leaves, is unclear. [2] A multiple-comb nest was found with one queen in Tokyo in 1980. The nest sat on a wire fence, and the two petioles were merely 13 mm apart. This nest was founded by a worker, in contrast with the well-known fact that P. snelleni nests are founded by a single queen. The worker reared brood in both combs at the same time. Early emerging males were often spotted around this special nest, so the worker that ho created the nest is assumed to have copulated with at least one early-emerging male. [6]

Early-emerging males

The founding queen of a nest is known to produce her first brood to be workers. In a study about early-emerging males in this initial brood of workers, many observations were taken. First, the possibility of sibling mating was quite high in nests with early-emerging males. No early-emerging males were found to be diploid in chromosome number. So, the early-emerging males were haploid, with the number chromosomes in a haploid set being 30. This was in contrast with previously known data where the number of haploid chromosomes had been set at 13. These chromosomes were observed to be meta- or submetacentrics. Nests with early-emerging males had a strong possibility of mating between these males and the workers of the same brood. [10]

Related Research Articles

<i>Dolichovespula maculata</i> Species of wasp

Dolichovespula maculata is a species of wasp in the genus Dolichovespula and a member of the eusocial, cosmopolitan family Vespidae. It is known by many colloquial names, primarily bald-faced hornet, but also including bald-faced aerial yellowjacket, bald-faced wasp, bald hornet, white-faced hornet, blackjacket, white-tailed hornet, spruce wasp, and bull wasp. Technically a species of yellowjacket wasp, it is not one of the true hornets, which are in the genus Vespa. Colonies contain 400 to 700 workers, the largest recorded colony size in its genus, Dolichovespula. It builds a characteristic large hanging paper nest up to 58 cm (23 in) in length. Workers aggressively defend their nest by repeatedly stinging invaders.

<span class="mw-page-title-main">Paper wasp</span> Vespid wasps that gather fibers from dead wood and plant stems

Paper wasps are vespid wasps and typically refers to members of the vespid subfamily Polistinae, though it often colloquially includes members of the subfamilies Vespinae and Stenogastrinae, discussed elsewhere, which also make nests out of paper. Paper wasp nests are characterized by open combs with down pointing cells. Some types of paper wasps are also sometimes called umbrella wasps, due to the distinctive design of their nests.

<span class="mw-page-title-main">Polistinae</span> Subfamily of insects

The Polistinae is a subfamily of eusocial wasps belonging to the family Vespidae. They are closely related to the wasps and true hornets of the subfamily Vespinae, containing four tribes. With about 1,100 species total, it is the second-most diverse subfamily within the Vespidae, and while most species are tropical or subtropical, they include some of the most frequently encountered large wasps in temperate regions.

<span class="mw-page-title-main">European paper wasp</span> Species of wasp

The European paper wasp is one of the most common and well-known species of social wasps in the genus Polistes. Its diet is more diverse than those of most Polistes species—many genera of insects versus mainly caterpillars in other Polistes—giving it superior survivability compared to other wasp species during a shortage of resources.

<i>Polistes gallicus</i> Species of wasp

Polistes gallicus is a species of paper wasp found in various parts of Europe, excluding England, Denmark, and Scandinavia, from warmer climates to cooler regions north of the Alps. Nests of these social insects are created in these various conditions. The Polistes species use an oral secretion to construct their nests, which consist of a combination of saliva and chewed plant fibers. This structural mixture physically protects the nest from various harsh elements and from weathering over time.

<i>Polistes chinensis</i> Species of wasp

Polistes chinensis is a polistine vespid wasp in the cosmopolitan genus Polistes, and is commonly known as the Asian, Chinese or Japanese paper wasp. It is found in East Asia, in particular China and Japan. The subspecies P. chinensis antennalis is an invasive species in New Zealand, having arrived in 1979.

<i>Polistes annularis</i> Species of wasp

Polistes annularis is a species of paper wasp found throughout the eastern half of the United States. This species of red paper wasp is known for its large size and its red-and-black coloration and is variably referred to as a ringed paper wasp or jack Spaniard wasp. It builds its nest under overhangs near bodies of water that minimize the amount of sunlight penetration. It clusters its nests together in large aggregations, and consumes nectar and other insects. Its principal predator is the ant, although birds are also known to prey on it. Unlike other wasps, P. annularis is relatively robust in winter conditions, and has also been observed to store honey in advance of hibernation. This species has also been used as a model species to demonstrate the ability to use microsatellite markers in maternity assignment of social insects.

<i>Polistes metricus</i> Species of wasp

Polistes metricus is a wasp native to North America. In the United States, it ranges throughout the southern Midwest, the South, and as far northeast as New York, but has recently been spotted in southwest Ontario. A single female specimen has also been reported from Dryden, Maine. Polistes metricus is dark colored, with yellow tarsi and black tibia. Nests of Polistes metricus can be found attached to the sides of buildings, trees, and shrubbery.

<i>Polistes exclamans</i> Species of wasp

Polistes exclamans, the Guinea paper wasp, is a social wasp and is part of the family Vespidae of the order Hymenoptera. It is found throughout the United States, Mexico, the Bahamas, Jamaica and parts of Canada. Due to solitary nest founding by queens, P. exclamans has extended its range in the past few decades and now covers the eastern half of the United States, as well as part of the north. This expansion is typically attributed to changing global climate and temperatures. P. exclamans has three specific castes, including males, workers, and queens, but the dominance hierarchy is further distinguished by age. The older the wasp is, the higher it is in ranking within the colony. In most P. exclamans nests, there is one queen who lays all the eggs in the colony. The physiological similarities between the worker and queen castes have led to experiments attempting to distinguish the characteristics of these two castes and how they are determined, though males have easily identifiable physiological characteristics. Since P. exclamans live in relatively small, open combed nests, they are often subject to predators and parasites, such as Chalcoela iphitalis, Elasmus polistis, and birds. P. exclamans have defense and recognition strategies that help protect against these predators and parasites.

<i>Polistes bellicosus</i> Species of insect

Polistes bellicosus is a social paper wasp from the order Hymenoptera typically found within Texas, namely the Houston area. Like other paper wasps, Polistes bellicosus build nests by manipulating exposed fibers into paper to create cells. P. bellicosus often rebuild their nests at least once per colony season due to predation.

<i>Polistes canadensis</i> Species of wasp

Polistes canadensis is a species of red paper wasp found in the Neotropical realm. It is a primitively eusocial wasp as a member of the subfamily Polistinae. A largely predatory species, it hunts for caterpillar meat to supply its colony, often supplementing its developing larvae with nectar. The most widely distributed American species of the genus Polistes, it colonizes multiple combs, which it rears year-round.

<i>Polistes atrimandibularis</i> Species of wasp

Polistes atrimandibularis is one of four obligate social parasites among the Polistes wasps found in Europe. Of the four social paper wasp parasite species known, it is the smallest. It parasitizes multiple species such as P. dominula, P. nimpha, P. associus, P. gallicus, and P. biglumis. Females of P. atrimandibularis are unable to build a nest or produce workers, and therefore rely entirely on the host colony.

<i>Belonogaster petiolata</i> Species of wasp

Belonogaster petiolata is a species of primitively eusocial wasp that dwells in southern Africa, in temperate or subhumid climate zones. This wasp species has a strong presence in South Africa and has also been seen in northern Johannesburg. Many colonies can be found in caves. The Sterkfontein Caves in South Africa, for example, contain large populations of B. petiolata.

<i>Polistes biglumis</i> Species of wasp

Polistes biglumis is a species of social wasp within Polistes, the most common genus of paper wasp. It is distinguished mainly by its tendency to reside in montane climates in meadows or alpine areas. Selection pressure from the wasp's environment has led to several idiosyncrasies of its behavior and lifecycle with respect to its relative species in the genus Polistes. It alone among paper wasps is often polyandrous. In addition, it has a truncated nesting season that gives rise to unique competitive dynamics among females of the species. P. biglumis wasps use an odor-based recognition system that is the basis for all wasp-to-wasp interaction of the species. The wasp's lifecycle is highly intertwined with that of Polistes atrimandibularis, an obligate social parasite wasp that frequently invades the combs of P. biglumis wasps.

<i>Polistes semenowi</i> Species of wasp

Polistes semenowi is a species of paper wasp in the genus Polistes that is found in southeastern and southern central Europe, as well as central Asia, and was until 2017 erroneously known by the name Polistes sulcifer, while a different species was incorrectly believed to represent P. semenowi. It is one of only four known Polistes obligate social parasites, sometimes referred to as "cuckoo paper wasps", and its host is the congeneric species Polistes dominula. As an obligate social parasite, this species has lost the ability to build nests, and relies on the host workers to raise its brood. P. semenowi females use brute force, followed by chemical mimicry in order to successfully usurp a host nest and take over as the queen.

<i>Ropalidia revolutionalis</i> Species of wasp

Ropalidia revolutionalis, the stick-nest brown paper wasp, is a diurnal social wasp of the family Vespidae. They are known for the distinctive combs they make for their nests, and they have been found in Queensland, Australia in the areas of Brisbane and Townsville. They are an independent founding wasp species, and they build new nests each spring. They can be helpful because they control insect pests in gardens.

<i>Polistes major major</i> Subspecies of wasp

Polistes major major is a Neotropical eusocial paper wasp subspecies most commonly found on the Caribbean island of Hispaniola, as well as in Central America, South Florida in the United States, and Puerto Rico. It has been called avispa de caballo in the Dominican Republic.

<i>Polistes japonicus</i> Species of wasp

Polistes japonicus is a eusocial paper wasp found in Japan. It was first described by Henri Louis Frédéric de Saussure in 1858. It is closely related to Polistes formosanus. This species lives in small colonies with few workers and a foundress queen. Nests of these wasps are sometimes used as a traditional medicine in Korea, China, and Japan.

<i>Polistes versicolor</i> Species of wasp

Polistes versicolor, also known as the variegated paper wasp or yellow paper wasp, is a subtropical social wasp within Polistes, the most common genus of paper wasp. It is the most widely distributed of South American wasp species and is particularly common in the Southeastern Brazilian states. This social wasp is commonly referred to as the yellow paper wasp due to the distinct yellow bands found on its thorax and abdomen. The P. versicolor nest, made of chewed vegetable fiber, is typically a single, uncovered comb attached to the substrate by a single petiole. The yellow wasp is frequently found in urban areas. New nests and colonies are usually founded by an association of females, sometimes in human buildings.

Polistes erythrocephalus is a species of paper wasp in the subfamily Polistinae of family Vespidae found in Central and South America. P. erythrocephalus is a eusocial wasp, meaning that it possesses both reproductive and non-reproductive castes. The cooperation between the two castes to raise young demonstrates the altruistic nature of these wasps. P. erythrocephalus exhibits a four-stage colony cycle, as do many other Polistes wasps. This species generally feeds on larvae, occasionally their own, and is preyed upon by species such as army ants.

References

  1. "Polistes snelleni de Saussure, 1862". GBIF.org. Retrieved 2 May 2017.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Yamane, Soichi (September 1969). "Preliminary Observations on the Life History of Two Polistine Wasps, Polistes Snelleni and P.biglumis in Sapporo, Northern Japan (With 9 Text-figures and 3 Tables)". Journal of the Faculty of Science Hokkaido University. 17 (1). hdl:2115/27477.
  3. 1 2 3 Inagawa, K. (1 September 2001). "Colony productivity of the paper wasp Polistes snelleni: Comparison between cool-temperate and warm-temperate populations". Insectes Sociaux. 48 (3): 259–265. doi:10.1007/PL00001775. S2CID   27060961.
  4. Pickett, K. M. (December 2006). "Systematics of Polistes (Hymenoptera:Vespidae), with a phylogenetic consideration of Hamilton's haplodiploidy hypothesis". Ann. Zool. Fennici. 43 (1): 390–406. JSTOR   23736750.
  5. 1 2 3 4 5 6 7 Suzuki, Tadashi (1998). "Paradox of worker reproduction and worker mating in temperate paper wasps, Polistes chinensis and P. snelleni (Hymenoptera Vespidae)". Ethology Ecology & Evolution. 10 (4): 347–359. doi:10.1080/08927014.1998.9522848.
  6. 1 2 Ono, Masato (6 September 1989). "Multiple-comb Nest Foundation by a Single Inseminated Worker of the Temperate Paper Wasp, Polistes snelleni Saussure (Hymenoptera: Vespidae)". Journal of Ethology. 7 (1): 57–58. doi:10.1007/BF02350583. S2CID   43222471.
  7. 1 2 3 4 5 Suzuki, Tadashi (1 August 1987). "Egg-producers in the colonies of a polistine wasp, Polistes snelleni (Hymenoptera: Vespidae), in central Japan". Ecological Research. 2 (2): 185–189. doi:10.1007/BF02346926. S2CID   33484543.
  8. 1 2 3 Yamane, Soichi (30 October 1971). "Daily Activities of the Founding Queens of Two Polistes Wasps, P. snelleni and P. biglumis in the Solitary Stage (Hymenoptera, Vespidae)". Japanese Journal of Entomology. 39 (3).
  9. Makino, Shun'ichi (25 June 1994). "Bionomics of Elasmus japonicus (Hymenoptera, Elasmidae), a Parasitoid of a Paper Wasp, Polistes snelleni (Hymenoptera, Vespidae)" (PDF). Retrieved 20 November 2014.{{cite journal}}: Cite journal requires |journal= (help)
  10. Hoshiba, Hidehiro (1984). "The Early Emerging Male of the Japanese Paper Wasp, Polistes snelleni Saussure (Vespidae, Hymenoptera) and its Chromosome". Proceedings of the Japan Academy, Series B. 60 (9): 368–371. Bibcode:1984PJAB...60..368H. doi: 10.2183/pjab.60.368 .