Promastax

Last updated

Promastax
Temporal range: Ypresian
Promastax archaicus Handlirsch 1910 Fig1 cropped.png
Promastax archaicus 1910 illustration
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Orthoptera
Suborder: Caelifera
Family: Promastacidae
Genus: Promastax
Handlirsch, 1910
Species:
P. archaicus
Binomial name
Promastax archaicus
Handlirsch, 1910
Erucius sp. monkey hopper Monkey Hopper (Erucius sp.) (23378848305).jpg
Erucius sp. monkey hopper

Promastax is a genus of "monkey grasshoppers" belonging to the extinct monotypic family Promastacidae and containing the single species Promastax archaicus. The species is dated to the Early Eocenes Ypresian stage and has only been found at the type locality in east central British Columbia.

Contents

History and classification

The holotype fossil of Promastax archaicus was collected by Lawrence Lambe from outcrops of the Horsefly Shales at the horsefly Mine on 20 July 1906, and then subsequently described by Anton Handlirsch in 1910. The type description was published in his Canadian fossil Insects. 5. Insects from the Tertiary lake deposits of the southern interior of British Columbia, along with a number of other Okanagan Highlands insect species. Handlirsch did not include the etymological derivation of genus or species names in the volume. [1]

Handlirsch initially grouped Promastax into the orthopteran superfamily Acridioidea without making a more precise placement. He noted a gross similarity with the Acridinae subfamily as then defined, but that it differed in the venation of the wing apex. The short cubital region he likened to "Mastacinae" genera, but again noted the significant differences within the venation of Promastax archaicus as reason not to place the genus there. [1] The genus was not discussed in any depth again until Kevan and Wighton (1981) described a series of orthopteroid fossils from the Paleocene Paskapoo Formation in central Alberta. Along with the monotypic Promastacoides , Promastax was referred by Kevan and Wighton (1981) to a new family Promastacidae which they placed in the superfamily Eumastacoidea. [2] Kevan and Wighton identified Promastacoides as a very primitive member of Eumastacoidea and together with Promastax shared a close relationship to the family "Eruciidae". However Promastacoides was subsequently identified as a Susumaniinae stick insect [3] leaving the family Promastacidae with only Promastax. [4] The quality of the characters defined for the erection of Promastacidae were noted as few and of poor quality by Schubnel et al. (2020), and they stated that the family should be revised. [5]

Distribution and paleoenvironment

Promastax archaicus lived in the forests surrounding the Horsefly Shales [1] [2] lake system during the Early Eocene Climatic Optimum. [6] The horsefly shales have not been radiometrically dated, but based on shared floral and faunal taxa found in other Early Eocene, Ypresian, age Okanagan Highlands sites, Horsefly is assumed to be contemporaneous. [7] The lake was subject to season summer algal bloom of the diatom Eoseira wilsonii , with the polysaccharide slime grown by E. wilsonii suggested to have enhanced the preservation quality of organisms that were coated with slime films before entombment in the lake bottom. [8]

The greater Eocene Okanagan highlands likely had a mesic upper microthermal to lower mesothermal climate, in which winter temperatures rarely dropped low enough for snow, and which were seasonably equitable. [9] The Okanagan Highlands paleoforest surrounding the lakes have been described as precursors to the modern temperate broadleaf and mixed forests of Eastern North America and Eastern Asia. Based on the fossil biotas the lakes were higher and cooler then the coeval coastal forests preserved in the Puget Group and Chuckanut Formation of Western Washington, which are described as lowland tropical forest ecosystems. Estimates of the paleoelevation range between 0.7–1.2 km (0.43–0.75 mi) higher than the coastal forests. This is consistent with the paleoelevation estimates for the lake systems, which range between 1.1–2.9 km (1,100–2,900 m), which is similar to the modern elevation 0.8 km (0.50 mi), but higher. [9] Estimates of the mean annual temperature have been derived from leaf margin analysis (LMA) of the Horsefly shales with the LMA returning a mean annual temperature of approximately 10.4 ± 2.2 °C (50.7 ± 4.0 °F). The estimated cold month mean temperature during the winter is placed at approximately 5.3 ± 2.8 °C (41.5 ± 5.0 °F). These estimates are lower than the mean annual temperature estimates given for the coastal Puget Group, which is estimated to have been between 15–18.6 °C (59.0–65.5 °F). The bioclimatic analysis for Horsefly suggests a mean annual precipitation amount of 105 ± 47 cm (41 ± 19 in). [9]

The Okanagan Highlands fossil sites, which includes the Eocene formations between the Driftwood Shales near Smithers, British Columbia in the north and the Klondike Mountain Formation surrounding Republic, Washington to the south have been described collectively as one of the "Great Canadian Lagerstätten " [10] based on the diversity, quality and unique nature of the biotas that are preserved. The highlands temperate biome preserved across such a large transect of lakes recorded many of the earliest appearances of modern genera, while also documenting the last stands of ancient lines. [10] The warm temperate highland floras in association with downfaulted lacustrine basins and active volcanism are noted to have no exact modern equivalents. This is due to the more seasonally equitable conditions of the Early Eocene, resulting in much lower seasonal temperature shifts. However, the highlands have been compared to the upland ecological islands in the Virunga Mountains within the Albertine Rift of the African rift valley. [11]

Description

modern grasshopper wings with the major veins labeled Grasshopper wing structure.png
modern grasshopper wings with the major veins labeled

The only described fossil of Promastax archaicus is the holotype forewing, which is incomplete, missing the basal region of the wing. The preserved length is given by Handlirsch (1910) as 18 mm (0.71 in) with an estimated complete length of 25 mm (0.98 in) [1] though Kevan and Wighton (1981) suggested the full length might be longer. [2] The wing has a rounded apical margin, and a width that does not exceed being a quarter that of the length. Along the posterior margin, the anal area, marked as A in the illustration, extends less than half the wing length, while along the costal margin the costal vein, marked as C, also extends about halfway along the wing. The precostal area, the region between the costal vein and the wing edge is described as large, as is the costal region, the area between the costal and subcostal vein. The subcostal, marked as Sc, and Radius, marked as R, run close to each other, with only a narrow space between before the subcostal turns upwards and terminates at the wing margin. [1] The sector radii, marked Rs, forks two times, with the main Rs vein angling upwards to the costal margin before curving slightly to the posterior and terminating at the wings apical margin. On the costal side the main Rs, a series of four small veins branch off near the end of the vein, while two larger branches fork off from the posterior side more basally and angle towards the posterior margin. The medial, marked M, and cubital, marked Cu, veins are each separated by larger open spaces, with only a single branch from the medial vein forking off the posterior side between it and the cubital vein. [1]

Related Research Articles

<i>Tilia johnsoni</i> Extinct species of flowering plant

Tilia johnsoni is an extinct species of flowering plant in the family Malvaceae that, as a member of the genus Tilia, is related to modern lindens. The species is known from fossil leaves found in the early Eocene deposits of northern Washington state, United States and a similar aged formation in British Columbia, Canada.

<i>Archiinocellia</i> Extinct genus of snakeflies

Archiinocellia is an extinct genus of snakefly in the family Raphidiidae known from Eocene fossils found in western North America. The genus contains two species, the older Archiinocellia oligoneura and the younger Archiinocellia protomaculata. The type species is of Ypresian age and from the Horsefly Shales of British Columbia, while the younger species from the Lutetian Green River Formation in Colorado. Archiinocellia protomaculata was first described as Agulla protomaculata, and later moved to Archiinocellia.

<i>Dinokanaga</i> Extinct genus of insects

Dinokanaga is a small genus of scorpionfly belonging to the extinct family Dinopanorpidae. The six species D. andersoni, D. dowsonae, D. hillsi, D. sternbergi, D. webbi, and D. wilsoni have all been recovered from Eocene fossil sites in British Columbia, Canada, and Washington state, United States.

The Coldwater Beds are a geologic formation of the Okanagan Highlands in British Columbia, Canada. They preserve fossils dating back to the Ypresian stage of the Eocene period, or Wasatchian in the NALMA classification.

<i>Ainigmapsychops</i> Extinct genus of lacewings

Ainigmapsychops is an extinct genus of lacewing in the silky lacewing family Psychopsidae. The genus is solely known from an Eocene fossil found in North America. At the time of its description the new genus was composed of a single species, Ainigmapsychops inexspectatus.

<i>Hiodon woodruffi</i> Extinct species of fish

Hiodon woodruffi is an extinct species of bony fish in the mooneye family, Hiodontidae. The species is known from fossils found in the early Eocene deposits of northern Washington state in the United States and late Eocene deposits in northwestern Montana. The species was first described as Eohiodon woodruffi. H. woodruffi is one of two Eocene Okanagan Highlands mooneye species, and one of five fish identified in the Klondike Mountain Formation.

<i>Amia</i>? <i>hesperia</i> Extinct species of ray-finned fishes

Amia? hesperia is an extinct species of bony fish in the bowfin family, Amiidae. The species is known from fossils found in the early Eocene deposits of northern Washington state in the United States and southeastern British Columbia. The species is one of eight fish species identified in the Eocene Okanagan Highlands paleofauna.

<i>Palaeopsychops</i> Extinct genus of lacewings

Palaeopsychops is an extinct genus of lacewing in the moth lacewings family Ithonidae. The genus is known from Early Eocene fossils found in Europe, and North America and is composed of ten species. The ten species can be informally separated into two species groups based on veination of the forewings, the "European" and "North American" groups. When first described, the genus was placed in the family Psychopsidae, but later was moved to Polystoechotidae, which itself is now considered a subgroup of the moth lacewings.

<i>Barghoornia</i> Extinct species of flowering plants

Barghoornia is an extinct genus of flowering plants in the family Burseraceae containing the solitary species Barghoornia oblongifolia. The species is known from fossil leaves found in the early Eocene deposits of northern Washington state, United States.

Acer spitzi is an extinct maple species in the family Sapindaceae described from a single fossil samara. The species is solely known from the Early Eocene sediments exposed in northeast Washington state, United States. It is the only species belonging to the extinct section Spitza.

<i>Carpinus perryae</i> Extinct species of hornbeam

Carpinus perryae is an extinct species of hornbeam known from fossil fruits found in the Klondike Mountain Formation deposits of northern Washington state, dated to the early Eocene Ypresian stage. Based on described features, C. perryae is the oldest definite species in the genus Carpinus.

<i>Fagus langevinii</i> Fossil species of beech tree

Fagus langevinii is an extinct species of beech in the family Fagaceae. The species is known from fossil fruits, nuts, pollen, and leaves found in the early Eocene deposits of South central British Columbia, and northern Washington state, United States.

<i>Plecia canadensis</i> Extinct species of flies

Plecia canadensis is an extinct species of Plecia in the fly family Bibionidae. The species is solely known from Early Eocene sediments exposed in central southern British Columbia. The species is one of twenty bibionid species described from the Eocene Okanagan Highlands paleofauna.

<span class="mw-page-title-main">Eocene Okanagan Highlands</span>

The Eocene Okanagan Highlands or Eocene Okanogan Highlands are a series of Early Eocene geological formations which span a 1,000 km (620 mi) transect of British Columbia, Canada, and Washington state, United States. Known for a highly diverse and detailed plant and animal paleobiota the paleolake beds as a whole are considered one of the great Canadian Lagerstätten. The paleobiota represented are of an upland subtropical to temperate ecosystem series immediately after the Paleocene–Eocene thermal maximum, and before the increased cooling of the middle and late Eocene to Oligocene. The fossiliferous deposits of the region were noted as early as 1873, with small amounts of systematic work happening in the 1870–1920s on British Columbian sites, and 1920–1930s for Washington sites. Focus and more detailed descriptive work on the Okanagan Highland sites started in the late 1960s.

The paleofauna of the Eocene Okanagan Highlands is comprised of Early Eocene arthropods, vertebrates, plus rare nematodes and molluscs found in geological formations of the northwestern North American Eocene Okanagan Highlands. The highlands lake bed series' as a whole are considered one of the great Canadian Lagerstätten. The paleofauna represents that of a late Ypresian upland temperate ecosystem immediately after the Paleocene-Eocene thermal maximum, and before the increased cooling of the middle and late Eocene to Oligocene. The fossiliferous deposits of the region were noted as early as 1873, with small amounts of systematic work happening in the 1880-90s on British Columbian sites, and 1920-30s for Washington sites. Focus and more detailed descriptive work on the Okanagan Highlands site started in the last 1970's. Most of the highlands sites are preserved as compression-impression fossils in "shales", but also includes a rare permineralized biota and an amber biota.

Eoseira is an extinct genus of diatoms belonging to the family Aulacoseiraceae and containing the single species Eoseira wilsonii. The species is dated to the Early Eocenes Ypresian stage and have only been found at the type locality in east central British Columbia.

<i>Alnus parvifolia</i> Extinct species of flowering plant

Alnus parvifolia is an extinct species of flowering plant in the family Betulaceae related to the modern birches. The species is known from fossil leaves and possible fruits found in early Eocene sites of northern Washington state, United States, and central British Columbia, Canada.

<i>Plecia avus</i> Extinct species of March fly

Plecia avus is an extinct species of Plecia in the March fly family Bibionidae and is solely known from Early Eocene sediments exposed in central southern British Columbia. The species is one of twenty bibionid species described from the Eocene Okanagan Highlands.

<i>Polystoechotites</i> Extinct genus of lacewings

Polystoechotites is an extinct parataxon of lacewings in the moth lacewing family Ithonidae. The taxon is a collective group for fossil polystechotid giant lacewing species whose genus affiliation is uncertain, but which are distinct enough to identify as segregate species. Polystoechotites species are known from Eocene fossils found in North America and is composed of four named species Polystoechotites barksdalae, Polystoechotites falcatus, Polystoechotites lewisi, and Polystoechotites piperatus, plus two unnamed species. Three of the described species are known from fossils recovered from the Eocene Okanagan Highlands of Washington State, while the fourth is from Colorado.

<i>Republicopteron</i> Genus of cricket-like animals

Republicopteron is an extinct orthopteran genus in the katydid-like family Palaeorehniidae with a single described species Republicopteron douseae. The species is solely known from the Early Eocene sediments exposed in northeast Washington state, United States. The family is currently not placed into any orthoptera superfamily, being treated as incertae sedis, and thus the relationship between Republicopteron and the other palaeorehniids with the larger cricket/katydid superfamilies is uncertain. Additionally the possibility that several palaeorehniids may be sister species was left open, an further specimens are needed for resolution of the relationships or synonymies between the genera.

References

  1. 1 2 3 4 5 6 Handlirsch, A. (1910). "Canadian fossil Insects. 5. Insects from the Tertiary lake deposits of the southern interior of British Columbia, collected by Mr. Lawrence M. Lambe". Contributions to Canadian Palaeontology. 2 (3): 93–129. doi:10.4095/100486.
  2. 1 2 3 Kevan, D.; Wighton, D. (1981). "Paleocene orthopteroids from south-central Alberta, Canada". Canadian Journal of Earth Sciences. 18 (12): 1824–1837. Bibcode:1981CaJES..18.1824K. doi:10.1139/e81-170.
  3. Nel, A.; Delfosse, E. (2011). "A new Chinese Mesozoic stick insect". Acta Palaeontologica Polonica . 56 (2): 429–432. doi: 10.4202/app.2009.1108 .
  4. "†family Promastacidae Kevan and Wighton 1981 (grasshopper)". Paleobiology Database. Retrieved 9 May 2022.
  5. Schubnel, T.; Desutter-Grandcolas, L.; Garrouste, R; Hervet, S.; Nel, A. (2020). "Paleocene of Menat Formation, France, reveals an extraordinary diversity of orthopterans and the last known survivor of a Mesozoic Elcanidae". Acta Palaeontologica Polonica. 65 (2): 371–385. doi: 10.4202/app.00676.2019 .
  6. Lowe, A. J.; Greenwood, D. R.; West, C. K.; Galloway, J. M.; Sudermann, M.; Reichgelt, T. (2018). "Plant community ecology and climate on an upland volcanic landscape during the Early Eocene Climatic Optimum: McAbee Fossil Beds, British Columbia, Canada". Palaeogeography, Palaeoclimatology, Palaeoecology. 511: 433–448. Bibcode:2018PPP...511..433L. doi:10.1016/j.palaeo.2018.09.010. S2CID   134962126.
  7. Archibald, S.B.; Rasnitsyn, A.P. (2015). "New early Eocene Siricomorpha (Hymenoptera: Symphyta: Pamphiliidae, Siricidae, Cephidae) from the Okanagan Highlands, western North America". The Canadian Entomologist. 148 (2): 209–228. doi:10.4039/tce.2015.55. S2CID   85743832.
  8. Wolfe, A.; Edlund, M. (2005). "Taxonomy, phylogeny, and paleoecology of Eoseira wilsonii gen. et sp. nov., a Middle Eocene diatom (Bacillariophyceae: Aulacoseiraceae) from lake sediments at Horsefly, British Columbia, Canada". Canadian Journal of Earth Sciences. 42 (2): 243–257. Bibcode:2005CaJES..42..243W. doi:10.1139/e04-051.
  9. 1 2 3 Greenwood, D.R.; Archibald, S.B.; Mathewes, R.W; Moss, P.T. (2005). "Fossil biotas from the Okanagan Highlands, southern British Columbia and northeastern Washington State: climates and ecosystems across an Eocene landscape". Canadian Journal of Earth Sciences. 42 (2): 167–185. Bibcode:2005CaJES..42..167G. doi:10.1139/e04-100.
  10. 1 2 Archibald, S.; Greenwood, D.; Smith, R.; Mathewes, R.; Basinger, J. (2011). "Great Canadian Lagerstätten 1. Early Eocene Lagerstätten of the Okanagan Highlands (British Columbia and Washington State)". Geoscience Canada. 38 (4): 155–164.
  11. DeVore, M. L.; Nyandwi, A.; Eckardt, W.; Bizuru, E.; Mujawamariya, M.; Pigg, K. B. (2020). "Urticaceae leaves with stinging trichomes were already present in latest early Eocene Okanogan Highlands, British Columbia, Canada". American Journal of Botany. 107 (10): 1449–1456. doi: 10.1002/ajb2.1548 . PMID   33091153. S2CID   225050834.