Rawnsley Quartzite

Last updated
Rawnsley Quartzite
Stratigraphic range: Late Ediacaran 555  Ma
O
S
D
C
P
T
J
K
Pg
N
[1]
Rawnsley Quartzite exposed at Brachina Gorge.jpg
Exposed rocks of the Rawnsley Quartzite
Type Formation
Unit of Pound Subgroup
Sub-units See: Members
Underlies Uratanna Formation
Overlies Bonney Sandstone
Area20,000 km2 (7,700 sq mi) [2]
Location
Region South Australia
Country Australia

The Rawnsley Quartzite is an Ediacaran geologic formation in South Australia. It is most well known for its preservation of organisms of the Ediacaran Biota.

Contents

Geology

Contrary to what the name suggests, the Rawnsley Quartzite is dominated by sandstone rocks. The formation is found entirely within the Nilpena Ediacara National Park, in the Flinders Ranges of Southern Australia. [3]

Members

The Rawnsley Quartzite is composed of two formal Members, and one currently informal Member, which are as follows, in ascending age:

The members are as follows, listed by ascending age:

Dating

The dating of the formation, and primarily the Ediacara Member, has been hindered due to the coarse-grained siliciclastic sedimentology of it. Despite this, there have been two grains dated through U-Pb dating that get close to a probable depositional age of the aforementioned member. The first grain yielded an age of 561.9±15.1  Ma , whilst the second one yields an age of 596±10  Ma . Meanwhile, another single grain from the underlying Bonney Sandstone yielded an age of 566±24  Ma . [1]

Due to these very few dates, a date of 555±0  Ma has been used as the Ediacara Member is know to correlate with the Zimnygory section in the Ustʹ Pinega Formation, Russia. [1]

Paleoenvironment

The environment at the time of the Ediacara Member's deposition was that of a shallow marine one, ranging from an estuarine, shoreface, and coastal environments. [2] Previous studies had a slightly wider range, with the environment going from the fair-weather wave base to a sub-storm wave base, as well as a delta-front, which ranged from a near to below the wave base. [3] The shallow marine environment was also inferred from the relatively thick matgrounds commonly found in most fossil beds of the member, which would have also helped to support the community of organisms within the general area. [3]

One researcher, Gregory Retallack, has regarded the member as being that of a terrestrial environment based on iron oxide coatings found within it, [5] although further studies done after have discounted these findings suggesting a terrestrial deposition for the member, as the compounds had been precipitated from groundwater beneath the member in the last ~2 million years. [6] Despite this piece of evidence, alongside a growing collection of other studies done before and after, [7] Retallack still supports a terrestrial environment for the Rawnsley Quartzite. [8]

Paleobiota

The beds at Nilpena Ediacara National Park contains a diverse, and complex system of Ediacaran organisms, from bilateral forms such as Parvancorina and Kimberella , [9] to the classic Ediacaran forms such as Dickinsonia and Arborea . [9] Due to its notable shallow environment, there is also a wide collection of algae forms, such as Flabellophyton and Longifuniculum , which are commonly referred to as "Bundles of Filaments" (BOF) in literature. [10] [9]

Color key
Taxon Reclassified taxonTaxon falsely reported as presentDubious taxon or junior synonym Ichnotaxon Ootaxon Morphotaxon
Notes
Uncertain or tentative taxa are in small text; crossed out taxa are discredited.

Bilaterian

GenusSpeciesNotesImages
Ikaria [9]
  • I. wariootia
Worm-like organism.
Ikaria wariootia.jpg
Kimberella [11] [4] [9]
  • K. quadrata
Mollusc-like organism.
Kimberella quadrata.jpg
Uncus [9]
  • U. dzaugisi
Worm-like organism.
Uncus dzaugisi.png
Velocephalina [12]
  • V. greenwoodensis
Mollusc-like organism. Due to being named exclusively in a PhD thesis, it is considered a nomen ineditum, meaning it was not properly published.

Cnidarian

GenusSpeciesNotesImages
Ediacaria [13]
  • E. flindersi
Discoidal organism.
Ediacara Conservation Park Ediacaria flindersi.png

Porifera

GenusSpeciesNotesImages
Palaeophragmodictya [10]
  • P. reticulata
Urn cambridge.org id binary 20220714094414656-0683 S0016756821000509 S0016756821000509 fig3 Palaeophragmodictya reticulata.png
Funisia [9]
  • F. dorothea
Olgunid tubular organism.
Funisia Reconstruction.png

Petalonamae

GenusSpeciesNotesImages
Arborea [11] [9]
  • A. arborea
Frondose organism.
Charniodiscus arboreus (TMP 1993.140.0001), Royal Tyrrell Museum, Drumheller, Alberta, 2025-07-13.jpg
Akrophyllas [14]
  • A. longa
Frondose organism.
Morphological reconstruction of Akrophyllas longa.png
Charniodiscus [11]
  • Charniodiscus sp.
Frondose organism.
Charniodiscus.png
Pteridinium [4]
  • Pteridinium sp.
  • P. simplex
Recumbent frondose organism
Pteridinium simplex Namibia.JPG

Proarticulata

GenusSpeciesNotesImages
Andiva [10] [9]
  • A. ivantsovi
Elongated motile organism, with glided reflection.
Andiva ivantsovi.jpg
Archaeaspinus [15]
  • A. fedonkini
Rounded motile organism, with glided reflection.
Archaeaspinus fedonkini.jpg
Dickinsonia [4] [10] [9]
  • D. costata
  • D. tenuis
Oval motile organism, with glided reflection.
DickinsoniaCostata.jpg
Marywadea [16]
  • M. ovata
Elongated motile organism, with glided reflection.
Putative-Ediacaran-metazoans-a-Natural-cast-on-bed-base-of-Kimberella-resting-trace d.png
Ovatoscutum [13]
  • O. concentricum
Rounded motile organism, with glided reflection. Previously described as a porpitid.
Ovatoscutum concentricium cropped.png
Praecambridium [17] [11]
  • P. sigillum
Rounded motile organism.
Praecambridium sigillum.jpg
Spriggina [4] [10] [9]
  • S. floundersi
Elongated motile organism, with glided reflection.
Spriggina Floundensi 4.png
Yorgia [11] [10]
  • Y. waggoneri
Rounded motile organism, with glided reflection.
Yorgia.jpg

Trilobozoa

GenusSpeciesNotesImages
Albumares (?) [18]
  • Albumares sp. (?)
Triradial organism. No proper description or image has been published of its record here, as such it remains uncertain if Albumares can also be found here.
Albumares crop.png
Rugoconites [10] [11] [9]
  • R. enigmaticus
Triradial organism.
Rugoconites.jpg
Tribrachidium [4] [9]
  • T. heraldicum
  • T. gehlingi
Triradial organism.
Tribrachidium.jpg

incertae sedis

GenusSpeciesNotesImages
Aspidella [10] [9]
  • A. terranovica
Disoidal organism.
Aspidella Flinders Ranges.png
Attenborites [19] [10] [9]
  • A. janae
Pelagic oval organism.
Attenborites.jpg
Aulozoon [10] [20] [9]
  • A. soliorum
Sessile, tubular organism.
Reconstruction-of-Aulozoon-soliorum-in-life-informed-by-data-presented-here-a-One.png
Conomedusites [10]
  • C. lobatus
Tetraradila organism, probable cnidarian.
1-s2.0-S1342937X1200353X-gr1 12.png
Coronacollina [10] [9]
  • C. acula
Triradial sponge-like organism, with four spicule-like structures.
Coronacollina acula Illustration by Pennetta.png
Cyclomedusa [21]
  • Cyclomedusa sp.
Discoidal organism.
Cyclomedusa.jpg
Eoandromeda [4]
  • E. octobrachiata
Eight-armed radial organism.
Eoandromeda.jpeg
Eoporpita [9]
  • E. medusa
Discoidal organism, probable cnidarian.
Eoporpita South Australia Museum.png
Mawsonites [10] [9]
  • M. spriggi
Discoidal organism.
Mawsonites spriggi.jpg
Nilpenia [22]
  • N. rossi
Branching, tubular and sediment-dwelling organism.
Nilpeniarossi.png
Obamus [23] [10] [9]
  • O. coronatus
Torus-shaped organism.
Obamus NT.jpg
Parvancorina [4] [10] [9]
  • P. minchami
Anchor-shaped organism.
Parvancorina minchami - MUSE.jpg
Phyllozoon [4]
  • P. hanseni
Interpreted as either an erniettomorph or a feeding trace.
Phyllozoon hanseni 1.jpg
Plexus [24] [10]
  • P. ricei
Worm-like organism, affinities unknown.
Plexus ricei paleoart.png
Pseudorhizostomites [10]
  • P. howchini
Pseudorhizostomites howchini Ediacara.jpg
Quaestio [9]
  • Q. simpsonorum
Asymmetrical, rounded organism.
Quaestio Reconstruction.png
Somatohelix [10]
  • S. sinuosus
Tubular organism.
Palaeopascichnus [10] [9]
  • Palaeopascichnus sp.
Palaeopascichnid organism
Palaeopascichnus CU21.png
Intrites [10]
  • Intrites sp.
Palaeopascichnid organism.

Flora

GenusSpeciesNotesImages
Flabellophyton [10]
  • F. stupendum
  • F. typicum
Filamentous macroalgae.
Liulingitaenia [10]
  • L. irregularis
Filamentous macroalgae.
Longifuniculum [10]
  • L. dissolutum
Whip-like macroalgae.

Ichnogenera

GenusSpeciesNotesImages
Helminthoidichnites [4] [10]
  • Helminthoidichnites sp.
Burrows.
Kimberichnus [25]
  • K. terruzi
Feeding traces of Kimberella.
Kimberella trace.jpg

Undescribed

GenusSpeciesNotesImages
Form 1 [11]
  • ???
Bilterial organism, bears similarities with Kimberella, although features a prominent "head" region at the front, and a "flange" at the rear.
Form 2 [11]
  • ???
Rounded organism, with a notable "head" shield.

See also

References

  1. 1 2 3 Reid, L. M.; Payne, J. L.; Tucker, N. M.; Jago, J. B. (17 February 2025). "Detrital zircon geochronology and sedimentary provenance of the fossiliferous Ediacara Member, South Australia". Australian Journal of Earth Sciences. 72 (2): 169–181. doi:10.1080/08120099.2025.2485976.
  2. 1 2 3 McMahon, William J.; Liu, Alexander G.; Tindal, Benjamin H.; Kleinhans, Maarten G. (30 November 2020). "Ediacaran life close to land: Coastal and shoreface habitats of the Ediacaran macrobiota, the Central Flinders Ranges, South Australia". Journal of Sedimentary Research. 90 (11): 1463–1499. doi:10.2110/jsr.2020.029.
  3. 1 2 3 4 5 Tarhan, Lidya G.; Droser, Mary L.; Gehling, James G.; Dzaugis, Matthew P. (2017). "Microbial Mat Sandwiches and Other Anactualistic Sedimentary Features of the Ediacara Member (rawnsley Quartzite, South Australia): Implications for Interpretation of the Ediacaran Sedimentary Record". PALAIOS. 32 (3): 181–194. ISSN   0883-1351.
  4. 1 2 3 4 5 6 7 8 9 10 Gehling, J. G.; García-Bellido, D. C.; Droser, M. L.; Tarhan, M. L.; Runnegar, B. (30 December 2019). "La transición ediacárico-cámbrica: facies sedimentarias versus extinción". Estudios Geológicos. 75 (2): e099. doi:10.3989/egeol.43601.554.
  5. Retallack, Gregory J. (January 2013). "Ediacaran life on land". Nature. 493 (7430): 89–92. doi:10.1038/nature11777.
  6. Tarhan, L. G.; Planavsky, N. J.; Wang, X.; Bellefroid, E. J.; Droser, M. L.; Gehling, J. G. (January 2018). "The late‐stage "ferruginization" of the Ediacara Member (Rawnsley Quartzite, South Australia): Insights from uranium isotopes". Geobiology. 16 (1): 35–48. doi:10.1111/gbi.12262.
  7. Weyland, W. C.; Droser, M. L. (2025-11-17). "Reply to comment by Retallack (2025) on ' The Ediacaran aquarium: insights from the Nilpena Ediacara National Park 1T-F marine ecosystem (Ediacara member, Rawnsley Quartzite) '". Australian Journal of Earth Sciences. 72 (8): 1161–1163. doi:10.1080/08120099.2025.2590158. ISSN   0812-0099.
  8. Retallack, G. J. (2025-11-17). "Comment on ' The Ediacaran aquarium: insights from the Nilpena Ediacara National Park 1T-F marine ecosystem (Ediacara member, Rawnsley Quartzite) ' by Weyland and Droser (2025)". Australian Journal of Earth Sciences. 72 (8): 1159–1160. doi:10.1080/08120099.2025.2590157. ISSN   0812-0099.
  9. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Weyland, W. C.; Droser, M. L. (17 February 2025). "The Ediacaran Aquarium: insights from the Nilpena Ediacara National Park 1T-F Marine Ecosystem (Ediacara Member, Rawnsley Quartzite)". Australian Journal of Earth Sciences. 72 (2): 151–168. doi:10.1080/08120099.2025.2462660.
  10. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Xiao, Shuhai; Gehling, James G.; Evans, Scott D.; Hughes, Ian V.; Droser, Mary L. (November 2020). "Probable benthic macroalgae from the Ediacara Member, South Australia". Precambrian Research. 350: 105903. doi:10.1016/j.precamres.2020.105903.{{cite journal}}: CS1 maint: article number as page number (link)
  11. 1 2 3 4 5 6 7 8 Coutts, Felicity J.; Gehling, James G.; García-Bellido, Diego C. (October 2016). "How diverse were early animal communities? An example from Ediacara Conservation Park, Flinders Ranges, South Australia". Alcheringa: An Australasian Journal of Palaeontology. 40 (4): 407–421. doi:10.1080/03115518.2016.1206326.
  12. Coutts, Felicity J. (January 2019). Palaeoecology of Ediacaran communities from the Flinders Ranges of South Australia (PhD thesis). University of Adelaide. doi:10.13140/RG.2.2.27075.96802.
  13. 1 2 Glaessner, M.F.; Wade, M. (1966). "The late Precambrian fossils from Ediacara, South Australia" (PDF). Palaeontology. 9 (4): 599. Archived from the original on September 27, 2007.
  14. Grimes, Kelsey F.; Narbonne, Guy M.; Gehling, James G.; Trusler, Peter W.; Dececchi, T. Alexander (March 2024). "Elongate Ediacaran fronds from the Flinders Ranges, South Australia". Journal of Paleontology. 98 (2): 249–265. doi:10.1017/jpa.2023.45.
  15. Mikhail A. Fodonkin, James G. Gehling, Kathleen Grey, Guy M. Narbonne, Patricia Vickers-Rich (2007). The Rise of Animals, Evolution and Diversification of the Kingdom Animalia. Johns Hopkins University Press, Baltimore. p. 261. ISBN   9780801886799.{{cite book}}: CS1 maint: multiple names: authors list (link)
  16. Glaessner, Martin F. (1976). "A new genus of late Precambrian polychaete worms from South Australia" (PDF). Transactions of the Royal Society of South Australia. 100 (3): 169–170. Archived from the original (PDF) on 2007-09-29.
  17. Glaessner, Martin F.; Wade, Mary (January 1971). "PRAECAMBRIDIUM ‐ A PRIMITIVE ARTHROPOD". Lethaia. 4 (1): 71–77. doi:10.1111/j.1502-3931.1971.tb01280.x.
  18. Gehling, J.G.; Droser M.L. (2009). "Textured organic surfaces associated with the Ediacara biota in South Australia". Earth-Science Reviews. 96 (3): 196–206. Bibcode:2009ESRv...96..196G. doi:10.1016/j.earscirev.2009.03.002.
  19. Droser, M. L.; Evans, S. D.; Dzaugis, P. W.; Hughes, E. B.; Gehling, J. G. (17 August 2020). "Attenborites janeae: a new enigmatic organism from the Ediacara Member (Rawnsley Quartzite), South Australia". Australian Journal of Earth Sciences. 67 (6): 915–921. doi:10.1080/08120099.2018.1495668.
  20. Surprenant, Rachel L.; Gehling, James G.; Hughes, Emmy B.; Droser, Mary L. (October 2023). "Biostratinomy of the enigmatic tubular organism Aulozoon soliorum, the Rawnsley Quartzite, South Australia". Gondwana Research. 122: 138–162. doi:10.1016/j.gr.2023.06.010.
    • Sprigg, R. C. (1947): "Early Cambrian jellyfishes (?) from the Flinders Range, South Australia", Transactions of the Royal Society of South Australia. 71.2, p. 220
  21. Droser, Mary L.; Gehling, James G.; Dzaugis, Mary E.; Kennedy, Martin J.; Rice, Dennis; Allen, Michael F. (January 2014). "A new Ediacaran fossil with a novel sediment displacive life habit". Journal of Paleontology. 88 (1): 145–151. doi:10.1666/12-158.
  22. Dzaugis, P. W.; Evans, S. D.; Droser, M. L.; Gehling, J. G.; Hughes, I. V. (17 August 2020). "Stuck in the mat: Obamus coronatus , a new benthic organism from the Ediacara Member, Rawnsley Quartzite, South Australia". Australian Journal of Earth Sciences. 67 (6): 897–903. doi:10.1080/08120099.2018.1479306.
  23. Joel, Lucas V.; Droser, Mary L.; Gehling, James G. (2014). "A New Enigmatic, Tubular Organism from the Ediacara Member, Rawnsley Quartzite, South Australia". Journal of Paleontology. 88 (2): 253–262. ISSN   0022-3360.
  24. Gehling, James G.; Runnegar, Bruce N.; Droser, Mary L. (2014). "Scratch Traces of Large Ediacara Bilaterian Animals". Journal of Paleontology. 88 (2): 284–298. ISSN   0022-3360.