Sangassou orthohantavirus | |
---|---|
Virus classification | |
(unranked): | Virus |
Realm: | Riboviria |
Kingdom: | Orthornavirae |
Phylum: | Negarnaviricota |
Class: | Ellioviricetes |
Order: | Bunyavirales |
Family: | Hantaviridae |
Genus: | Orthohantavirus |
Species: | Sangassou orthohantavirus |
Synonyms [1] | |
|
Sangassou orthohantavirus(SANGV) is single-stranded, negative-sense RNA virus species of the genus Orthohantavirus in the Bunyavirales order. It was first isolated in an African wood mouse ( Hylomyscus simus ) in the forest in Guinea, West Africa in 2010. It is named for the village near where the mouse was trapped. It is the first indigenous Murinae-associated African hantavirus to be discovered. [2]
The virus genome consists of three segments of negative-stranded RNA; the large (L) segment encodes the viral RNA-dependent RNA polymerase, the medium (M) segment encodes the envelope glycoproteins Gn and Gc (cotranslationally cleaved from a glycoprotein precursor), and the small (S) segment encodes the nucleocapsid (N) protein. [2]
In rodents, hantavirus produces a chronic infection with no adverse sequelae. In humans, hantavirus produces two major clinical syndromes: hemorrhagic fever or pulmonary syndrome. European, Asian, and African rodent-borne hantaviruses cause hemorrhagic fever. The pulmonary syndrome is caused mainly by Sin Nombre virus and Andes virus in the Americas. [3] [4]
Natural reservoirs for this hantavirus species include the slit faced bat, moles, and shrews. Rodent-borne hantaviruses form three major evolutionary clades corresponding to the subfamilies of their rodent hosts. HTNV, SEOV, and DOBV are examples of Murinae-associated hantaviruses. PUUV and Tula orthohantavirus (TULV) belong to the Arvicolinae-associated hantaviruses, and SNV and ANDV are representatives of Neotominae- and Sigmodontinae-associated hantaviruses. [2] [5]
Orthohantavirus is a genus of single-stranded, enveloped, negative-sense RNA viruses in the family Hantaviridae within the order Bunyavirales. Members of this genus may be called orthohantaviruses or simply hantaviruses.
Sin Nombre virus (SNV) is the most common cause of hantavirus pulmonary syndrome (HPS) in North America. Sin Nombre virus is transmitted mainly by the eastern deer mouse. In its natural reservoir, SNV causes an asymptomatic, persistent infection and is spread through excretions, fighting, and grooming. Humans can become infected by inhaling aerosols that contain rodent saliva, urine, or feces, as well as through bites and scratches. In humans, infection leads to HPS, an illness characterized by an early phase of mild and moderate symptoms such as fever, headache, and fatigue, followed by sudden respiratory failure. The case fatality rate from infection is high, at 30–50%.
Bunyavirales is an order of segmented negative-strand RNA viruses with mainly tripartite genomes. Member viruses infect arthropods, plants, protozoans, and vertebrates. It is the only order in the class Ellioviricetes. The name Bunyavirales derives from Bunyamwera, where the original type species Bunyamwera orthobunyavirus was first discovered. Ellioviricetes is named in honor of late virologist Richard M. Elliott for his early work on bunyaviruses.
Seoul virus (SEOV) is one of the main causes of hemorrhagic fever with renal syndrome (HFRS). Seoul virus is transmitted by the brown rat and the black rat. In its natural reservoirs, SEOV causes an asymptomatic, persistent infection and is spread through excretions, fighting, and grooming. Humans can become infected by inhaling aerosols that contain rodent saliva, urine, or feces, as well as through bites and scratches. In humans, infection leads to HFRS, an illness characterized by general symptoms such as fever and headache, as well as the appearance of spots on the skin and renal symptoms such as kidney swelling, excess protein in urine, blood in urine, decreased urine production, and kidney failure. The case fatality rate from infection is 1–2%.
Andes virus (ANDV) is the most common cause of hantavirus pulmonary syndrome (HPS) in South America. Andes virus is transmitted mainly by the long-tailed pygmy rice rat. In its natural reservoir, ANDV causes an asymptomatic, persistent infection and is spread through excretions, fighting, and grooming. Humans can become infected by inhaling aerosols that contain rodent saliva, urine, or feces, as well as through bites and scratches. In humans, infection leads to HPS, an illness characterized by an early phase of mild and moderate symptoms such as fever, headache, and fatigue, followed by sudden respiratory failure. The case fatality rate from infection is high, at about 40%.
Puumala virus (PUUV) is the main cause of hemorrhagic fever with renal syndrome (HFRS) in Europe and Russia. Puumala virus is transmitted by the bank vole. In its natural reservoir, PUUV causes a persistent infection with few symptoms and is spread through excretions, fighting, and grooming. Humans can become infected by inhaling aerosols that contain rodent saliva, urine, or feces, as well as through bites and scratches. In humans, infection is usually asymptomatic but can lead to a mild form of HFRS often called nephropathia epidemica (NE). Symptoms include fever and headache, impaired vision, as well as the appearance of spots on the skin and renal symptoms such as kidney swelling, excess protein in urine, blood in urine, decreased urine production, and kidney failure. The case fatality rate from infection is less than 1%.
Dobrava-Belgrade virus (DOBV) is the main cause of hemorrhagic fever with renal syndrome (HFRS) in southern Europe. In its natural reservoirs, DOBV causes a persistent, asymptomatic infection and is spread through excretions, fighting, and grooming. Humans can become infected by inhaling aerosols that contain rodent saliva, urine, or feces, as well as through bites and scratches. In humans, infection causes such as fever and headache, as well as the appearance of spots on the skin and renal symptoms such as kidney swelling, excess protein in urine, blood in urine, decreased urine production, and kidney failure. Acute respiratory distress syndrome occurs in about 10% of cases.
Soochong virus (SOOV) is a zoonotic negative sense single-stranded RNA virus. It may be a member of the genus Orthohantavirus, but it has not be definitively classified as a species and may only be a strain. It is one of four rodent-borne Hantaviruses found in the Republic of Korea. It is the etiologic agent for Hantavirus hemorrhagic fever with renal syndrome (HFRS). The other species responsible for HFRS in Korea are Seoul virus, Haantan virus, and Muju virus.
Magboi virus (MGBV) is a novel, bat-borne Orthohantavirus discovered in a slit-faced bat trapped near the Magboi Stream in eastern Sierra Leone in 2011. It is a single-stranded, negative sense, RNA virus in the Bunyavirales order.
Tula orthohantavirus, formerly Tula virus (TULV), is a single-stranded, negative-sense RNA virus species of orthohantavirus first isolated from a European common vole found in Central Russia and primarily carried by rodents. It causes Hantavirus hemorrhagic fever with renal syndrome. The Microtus species are also found in North America, Europe, Scandinavia, Slovenia, Asia, and Western Russia. Human cases of Tula orthohantavirus have also been reported in Switzerland and Germany.
Limestone Canyon virus (LSC) is a single-stranded, negative-sense RNA zoonotic Orthohantavirus that is genetically similar to Sin Nombre orthohantavirus which causes Hantavirus pulmonary syndrome (HPS) in humans. HPS causing hantaviruses are found only in the United States and South America.
Hantaan virus (HTNV) is the main cause of hemorrhagic fever with renal syndrome (HFRS) in East Asia. Hantaan virus is transmitted by the striped field mouse In its natural reservoir, HTNV causes a persistent, asymptomatic infection and is spread through excretions, fighting, and grooming. Humans can become infected by inhaling aerosols that contain rodent saliva, urine, or feces, as well as through bites and scratches. In humans, infection causes such as fever and headache, as well as the appearance of spots on the skin, hepatitis, and renal symptoms such as kidney swelling, excess protein in urine, blood in urine, decreased urine production, and kidney failure. Rarely, HTNV infection affects the pituitary gland and can cause empty sella syndrome. The case fatality rate from infection is up to 6.3%.
Tanganya virus(TGNV) is an enveloped, single-stranded, negative-sense RNA virus, possibly of the genus Orthohantavirus. It is the second indigenous Murinae-associated African hantavirus to be discovered. It has a low sequence similarity to other hantaviruses and is serologically distinct from other hantaviruses. It was discovered in January 2004 after extraction from tissue samples taken from a Therese's shrew (Crocidura theresae) near the village of Tanganya, Guinea.
Nova virus is a single-stranded, negative-sense, enveloped RNA virus with a trisegmented genome. It belongs to one of the most divergent lineages of the hantavirus group, which consists of zoonotic viruses belonging to the family Bunyaviridae. As of now, no human cases of infection have been reported.
Rockport virus (RKPV) is a single-stranded, enveloped, negative-sense RNA orthohantavirus.
Asama orthohantavirus(ASAV), also called Asama virus, is a single-stranded, enveloped, segmented negative-sense RNA hantavirus. The hantavirus was isolated in Japan from Japanese shrew mole. Hantaviruses harbored by shrews are genetically closer to ASAV than to hantaviruses harbored by rodents. Host-switching may be evident in the future due to the viruses closeness to soricine shrew-borne hantaviruses. The detection of the ASAV was the first hantavirus found to be hosted by members of the family Talpidae, which includes shrew moles. Thoughts on hantavirus evolutionary history has expanded due to the discovery of ASAV.
Oxbow virus(OXBV) is a single-stranded, enveloped, negative-sense RNA orthohantavirus.
Thailand virus (THAIV) is a single-stranded, enveloped, negative-sense RNA orthohantavirus.
Gou virus (GOUV) is a single-stranded, negative-sense, enveloped novel RNA orthohantavirus. It is one of the known hantaviruses responsible for hantavirus hemorrhagic fever with renal syndrome in humans.
Tanganya orthohantavirus (TGNV) is a viral isolate detected in tissue samples from Crocidura douceti. The putative host shrews were captured near the village of Tanganya, Guinea, in January 2004.