Selenate reductase

Last updated
Selenate reductase
Identifiers
EC no. 1.97.1.9
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a selenate reductase (EC 1.97.1.9) is an enzyme that catalyzes the chemical reaction

selenite + H2O + acceptor selenate + reduced acceptor

The 3 substrates of this enzyme are selenite, H2O, and acceptor, whereas its two products are selenate and reduced acceptor.

This enzyme belongs to the family of oxidoreductases. The systematic name of this enzyme class is selenite:reduced acceptor oxidoreductase.

Related Research Articles

In enzymology, a 4-hydroxybenzoyl-CoA reductase (EC 1.3.7.9) is an enzyme found in some bacteria and archaea that catalyzes the chemical reaction

In enzymology, a benzoyl-CoA reductase (EC 1.3.7.8) is an enzyme that catalyzes the chemical reaction

In enzymology, an aldehyde dehydrogenase (FAD-independent) (EC 1.2.99.7) is an enzyme that catalyzes the chemical reaction

In enzymology, a carboxylate reductase (EC 1.2.99.6) is an enzyme that catalyzes the chemical reaction

In enzymology, a glyceraldehyde-3-phosphate dehydrogenase (ferredoxin) (EC 1.2.7.6) is an enzyme that catalyzes the chemical reaction

Arsenate reductase (donor) (EC 1.20.99.1) is an enzyme that catalyzes the chemical reaction

Arsenate reductase (glutaredoxin) (EC 1.20.4.1) is an enzyme that catalyzes the chemical reaction

In enzymology, an ethylbenzene hydroxylase (EC 1.17.99.2) is an enzyme that catalyzes the chemical reaction

In enzymology, a leucoanthocyanidin reductase (EC 1.17.1.3) (LAR, aka leucocyanidin reductase or LCR) is an enzyme that catalyzes the chemical reaction

In enzymology, a phenylacetyl-CoA dehydrogenase (EC 1.17.5.1) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Adenylyl-sulfate reductase</span> Class of enzymes

Adenylyl-sulfate reductase is an enzyme that catalyzes the chemical reaction of the reduction of adenylyl-sulfate/adenosine-5'-phosphosulfate (APS) to sulfite through the use of an electron donor cofactor. The products of the reaction are AMP and sulfite, as well as an oxidized electron donor cofactor.

In enzymology, a CoA-disulfide reductase (EC 1.8.1.14) is an enzyme that catalyzes the chemical reaction

In enzymology, a ferredoxin—nitrite reductase (EC 1.7.7.1) is an enzyme that catalyzes the chemical reaction

In enzymology, a hydroxylamine reductase (EC 1.7.99.1) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">NAD(P)H dehydrogenase (quinone)</span>

In enzymology, a NAD(P)H dehydrogenase (quinone) (EC 1.6.5.2) is an enzyme that catalyzes the chemical reaction

In enzymology, a nitrite reductase [NAD(P)H] (EC 1.7.1.4) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">NADH:ubiquinone reductase (non-electrogenic)</span> Class of enzymes

NADH:ubiquinone reductase (non-electrogenic) (EC 1.6.5.9, NDH-2, ubiquinone reductase, coenzyme Q reductase, dihydronicotinamide adenine dinucleotide-coenzyme Q reductase, DPNH-coenzyme Q reductase, DPNH-ubiquinone reductase, NADH-coenzyme Q oxidoreductase, NADH-coenzyme Q reductase, NADH-CoQ oxidoreductase, NADH-CoQ reductase) is an enzyme with systematic name NADH:ubiquinone oxidoreductase. This enzyme catalyses the following chemical reaction:

Nitrate reductase (quinone) (EC 1.7.5.1, nitrate reductase A, nitrate reductase Z, quinol/nitrate oxidoreductase, quinol-nitrate oxidoreductase, quinol:nitrate oxidoreductase, NarA, NarZ, NarGHI) is an enzyme with systematic name nitrite:quinone oxidoreductase. This enzyme catalyses the following chemical reaction

Thauera selenatis is a gram-negative rod-shaped motile bacterium from the genus of Thauera with a single polar flagellum. Thauera selenatis has the ability to generate energy by respiring anaerobically with the enzyme selenate reductase.

Dissimilatory sulfite reductase is an enzyme that participates in sulfur metabolism in dissimilatory sulfate reduction.

References