Split hand syndrome

Last updated
Split hand syndrome
Specialty Neurological

In medicine, split hand syndrome is a neurological syndrome in which the hand muscles on the side of the thumb (lateral, thenar eminence) appear wasted, whereas the muscles on the side of the little finger (medial, hypothenar eminence) are spared. Anatomically, the abductor pollicis brevis and first dorsal interosseous muscle are more wasted than the abductor digiti minimi. [1]

If lesions affecting the branches of the ulnar nerve that run to the wasted muscles are excluded, the lesion is almost sure to be located in the anterior horn of the spinal cord at the C8-T1 level. [2] It has been proposed as a relatively specific sign for amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease). [1] [3] It can also occur in other disorders affecting the anterior horn, such as spinal muscular atrophy, Charcot-Marie-Tooth disease, poliomyelitis and progressive muscular atrophy. [2] [4] A slow onset and a lack of pain or sensorial symptoms are arguments against a lesion of the spinal root or plexus brachialis. [4] To an extent, these features can also be seen in normal aging (although technically, the apparent muscle wasting is sarcopenia rather than atrophy). [5]

The term split hand syndrome was first coined in 1994 by a researcher from the Cleveland Clinic called Asa J. Wilbourn. [6] [7]

Footnotes

  1. 1 2 Kuwabara S, Sonoo M, Komori T, et al. (April 2008). "Dissociated small hand muscle atrophy in amyotrophic lateral sclerosis: frequency, extent, and specificity". Muscle Nerve . 37 (4): 426–30. doi:10.1002/mus.20949. PMID   18236469. S2CID   18500530.
  2. 1 2 Split hand syndrome. Stedman's Medical Dictionary. Retrieved August 13, 2008.
  3. Kuwabara S, Mizobuchi K, Ogawara K, Hattori T (July 1999). "Dissociated small hand muscle involvement in amyotrophic lateral sclerosis detected by motor unit number estimates". Muscle Nerve . 22 (7): 870–3. doi:10.1002/(SICI)1097-4598(199907)22:7<870::AID-MUS9>3.0.CO;2-O. PMID   10398204. Archived from the original on 2013-01-05.
  4. 1 2 Schelhaas HJ, van de Warrenburg BP, Kremer HP, Zwarts MJ (December 2003). "The "split hand" phenomenon: evidence of a spinal origin". Neurology . 61 (11): 1619–20. doi:10.1212/01.wnl.0000096009.50213.6c. PMID   14663056. S2CID   39361741.
  5. Voermans NC, Schelhaas HJ, Munneke M, Zwarts MJ (December 2006). "Dissociated small hand muscle atrophy in aging: the 'senile hand' is a split hand". Eur J Neurol . 13 (12): 1381–4. doi:10.1111/j.1468-1331.2006.01477.x. PMID   17116225. S2CID   26868415.
  6. Wilbourn AJ, Sweeney PJ (1994). "Dissociated wasting of medial and lateral hand muscles with motor neuron disease". Can J Neurol Sci . 21 (S2): S9.
  7. Wilbourn AJ (January 2000). "The "split hand syndrome"". Muscle Nerve . 23 (1): 138. doi: 10.1002/(SICI)1097-4598(200001)23:1<138::AID-MUS22>3.0.CO;2-7 . PMID   10590421.

Related Research Articles

<span class="mw-page-title-main">Benign fasciculation syndrome</span> Involuntary muscle twitching in the voluntary muscles

Benign fasciculation syndrome (BFS) is characterized by fasciculation (twitching) of voluntary muscles in the body. The twitching can occur in any voluntary muscle group but is most common in the eyelids, arms, hands, fingers, legs, and feet. The tongue can also be affected. The twitching may be occasional to continuous. BFS must be distinguished from other conditions that include muscle twitches.

<span class="mw-page-title-main">Ulnar nerve</span> Nerve which runs near the ulna bone

The ulnar nerve is a nerve that runs near the ulna, one of the two long bones in the forearm. The ulnar collateral ligament of elbow joint is in relation with the ulnar nerve. The nerve is the largest in the human body unprotected by muscle or bone, so injury is common. This nerve is directly connected to the little finger, and the adjacent half of the ring finger, innervating the palmar aspect of these fingers, including both front and back of the tips, perhaps as far back as the fingernail beds.

The ankle jerk reflex, also known as the Achilles reflex, occurs when the Achilles tendon is tapped while the foot is dorsiflexed. It is a type of stretch reflex that tests the function of the gastrocnemius muscle and the nerve that supplies it. A positive result would be the jerking of the foot towards its plantar surface. Being a deep tendon reflex, it is monosynaptic. It is also a stretch reflex. These are monosynaptic spinal segmental reflexes. When they are intact, integrity of the following is confirmed: cutaneous innervation, motor supply, and cortical input to the corresponding spinal segment.

<span class="mw-page-title-main">Grey columns</span> Three columns of grey matter within the spinal cord

The grey columns are three regions of the somewhat ridge-shaped mass of grey matter in the spinal cord. These regions present as three columns: the anterior grey column, the posterior grey column, and the lateral grey column, all of which are visible in cross-section of the spinal cord.

<span class="mw-page-title-main">Onuf's nucleus</span> Group of neurons

Onuf's nucleus is a distinct group of neurons located in the ventral part of the anterior horn of the sacral region of the human spinal cord involved in the maintenance of micturition and defecatory continence, as well as muscular contraction during orgasm. It contains motor neurons, and is the origin of the pudendal nerve. The sacral region of the spinal cord is the fourth segment of vertebrae in the spinal cord which consists of the vertebrae 26-30. While working in New York City in 1899, Bronislaw Onuf-Onufrowicz discovered this group of unique cells and originally identified it as “Group X.” “Group X” was considered distinct by Onufrowicz because the cells were different in size from the surrounding neurons in the anterolateral group, suggesting that they were independent.

<span class="mw-page-title-main">Upper motor neuron lesion</span> Medical condition

An upper motor neuron lesion Is an injury or abnormality that occurs in the neural pathway above the anterior horn cell of the spinal cord or motor nuclei of the cranial nerves. Conversely, a lower motor neuron lesion affects nerve fibers traveling from the anterior horn of the spinal cord or the cranial motor nuclei to the relevant muscle(s).

Lower motor neurons (LMNs) are motor neurons located in either the anterior grey column, anterior nerve roots or the cranial nerve nuclei of the brainstem and cranial nerves with motor function. Many voluntary movements rely on spinal lower motor neurons, which innervate skeletal muscle fibers and act as a link between upper motor neurons and muscles. Cranial nerve lower motor neurons also control some voluntary movements of the eyes, face and tongue, and contribute to chewing, swallowing and vocalization. Damage to the lower motor neurons can lead to flaccid paralysis, absent deep tendon reflexes and muscle atrophy.

<span class="mw-page-title-main">Hypothenar eminence</span> Group of three muscles of the palm

The hypothenar muscles are a group of three muscles of the palm that control the motion of the little finger.

Primary lateral sclerosis (PLS) is a very rare neuromuscular disease characterized by progressive muscle weakness in the voluntary muscles. PLS belongs to a group of disorders known as motor neuron diseases. Motor neuron diseases develop when the nerve cells that control voluntary muscle movement degenerate and die, causing weakness in the muscles they control.

<span class="mw-page-title-main">Lateral corticospinal tract</span> Largest part of the corticospinal tract

The lateral corticospinal tract is the largest part of the corticospinal tract. It extends throughout the entire length of the spinal cord, and on transverse section appears as an oval area in front of the posterior column and medial to the posterior spinocerebellar tract.

<span class="mw-page-title-main">Progressive muscular atrophy</span> Medical condition

Progressive muscular atrophy (PMA), also called Duchenne–Aran disease and Duchenne–Aran muscular atrophy, is a disorder characterised by the degeneration of lower motor neurons, resulting in generalised, progressive loss of muscle function.

Bulbar palsy refers to a range of different signs and symptoms linked to impairment of function of the glossopharyngeal nerve, the vagus nerve, the accessory nerve, and the hypoglossal nerve. It is caused by a lower motor neuron lesion in the medulla oblongata, or from lesions to these nerves outside the brainstem, and also botulism. This may be caused by any of a number of genetic, vascular, degenerative, inflammatory, and other underlying conditions. It can be differentiated from pseudobulbar palsy. When there is airway obstruction, intubation is used.

<span class="mw-page-title-main">Brown-Séquard syndrome</span> Human spinal cord disorder

Brown-Séquard syndrome is caused by damage to one half of the spinal cord, i.e. hemisection of the spinal cord resulting in paralysis and loss of proprioception on the same side as the injury or lesion, and loss of pain and temperature sensation on the opposite side as the lesion. It is named after physiologist Charles-Édouard Brown-Séquard, who first described the condition in 1850.

<span class="mw-page-title-main">Lower motor neuron lesion</span> Medical condition

A lower motor neuron lesion is a lesion which affects nerve fibers traveling from the lower motor neuron(s) in the anterior horn/anterior grey column of the spinal cord, or in the motor nuclei of the cranial nerves, to the relevant muscle(s).

<span class="mw-page-title-main">ALS</span> Rare neurodegenerative disease

Amyotrophic lateral sclerosis (ALS), also known as motor neurone disease (MND) or Lou Gehrig's disease (LGD), is a rare, terminal neurodegenerative disorder that results in the progressive loss of both upper and lower motor neurons that normally control voluntary muscle contraction. ALS is the most common form of the motor neuron diseases. ALS often presents in its early stages with gradual muscle stiffness, twitches, weakness, and wasting. Motor neuron loss typically continues until the abilities to eat, speak, move, and, lastly, breathe are all lost. While only 15% of people with ALS also fully develop frontotemporal dementia, an estimated 50% face at least some minor difficulties with thinking and behavior. Depending on which of the aforementioned symptoms develops first, ALS is classified as limb-onset or bulbar-onset.

<span class="mw-page-title-main">Denervation</span> Loss of nerve supply

Denervation is any loss of nerve supply regardless of the cause. If the nerves lost to denervation are part of the neuronal communication to a specific function in the body then altered or a loss of physiological functioning can occur. Denervation can be caused by injury or be a symptom of a disorder like ALS, post-polio syndrome, or POTS. Additionally, it can be a useful surgical technique to alleviate major negative symptoms, such as in renal denervation. Denervation can have many harmful side effects such as increased risk of infection and tissue dysfunction.

Multifocal motor neuropathy (MMN) is a progressively worsening condition where muscles in the extremities gradually weaken. The disorder, a pure motor neuropathy syndrome, is sometimes mistaken for amyotrophic lateral sclerosis (ALS) because of the similarity in the clinical picture, especially if muscle fasciculations are present. MMN is thought to be autoimmune. It was first described in the mid-1980s.

<span class="mw-page-title-main">Hirayama disease</span> Medical condition

Hirayama disease, also known as monomelic amyotrophy (MMA), is a rare motor neuron disease first described in 1959 in Japan. Its symptoms usually appear about two years after adolescent growth spurt and is significantly more common in males, with an average age of onset between 15 and 25 years. Hirayama disease is reported most frequently in Asia but has a global distribution. It is typically marked by insidious onset of muscle atrophy of an upper limb, which plateaus after two to five years from which it neither improves nor worsens. There is no pain or sensory loss. It is not believed to be hereditary.

Jokela type spinal muscular atrophy (SMAJ), also known as late-onset spinal motor neuronopathy (LOSMoN), is an ultra-rare neuromuscular disorder characterized by muscle twitches and cramps. The symptoms appear in adulthood and gradually progress. The disease is caused by a mutation in the CHCHD10 gene and is inherited in an autosomal dominant pattern. It was first described by the Finnish neurologist Manu Jokela in 2011.

Facial onset sensory and motor neuronopathy, often abbreviated FOSMN, is a rare disorder of the nervous system in which sensory and motor nerves of the face and limbs progressively degenerate over a period of months to years. This degenerative process, the cause of which is unknown, eventually results in sensory and motor symptoms — the former consisting mainly of paresthesia followed by numbness, and the latter in muscle weakness, atrophy, and eventual paralysis. FOSM is characterized by sensory and motor loss beginning in the face and spreading to involve an increasingly larger area including the scalp, upper arms and trunk. The muscles or respiration and swallowing are commonly affected. In many ways, it is reminiscent of the much better known condition amyotrophic lateral sclerosis, with which it is closely related. There is no cure; treatment is supportive. Life expectancy may be shortened by respiratory complications arising from weakness of the muscles that aid breathing and swallowing. It was first described in four patients by Vucic and colleagues working at the Massachusetts General Hospital in the United States; subsequent reports from the United Kingdom, Europe and Asia point to a global incidence of the disease. It is thought to be exceptionally rare, with only approximately 100 individuals described to date in the medical literature.