Stephanorhinus kirchbergensis

Last updated

Stephanorhinus kirchbergensis
Temporal range: Middle Pleistocene–Late Pleistocene
O
S
D
C
P
T
J
K
Pg
N
Dicerorhinus kirchbergensis.JPG
Mostly complete skull from Germany
Stephanorhinus kirchbergensis skull.svg
Diagram of skull from Russia
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Perissodactyla
Family: Rhinocerotidae
Genus: Stephanorhinus
Species:
S. kirchbergensis
Binomial name
Stephanorhinus kirchbergensis
(Jäger, 1839)
Synonyms
List
  • Coelodonta merckii
    (Kaup, 1841)
  • Dicerorhinus merckii
    (Kaup, 1841)
  • Dc. m. var. brachycephala
    Schroeder, 1903
  • Dc. kirchbergensis
    (Jäger, 1839)
  • Dc. k. var. brachycephala
    Schroeder, 1903
  • Dihoplus kirchbergensis
    (Jäger, 1839)
  • R. incisivus
    Merck, 1784
  • R. kirchbergense
    Jäger, 1839
  • R. leptorhinus
    Cuvier, 1836
  • R. megarhinus
    de Christol, 1834
  • R. merckii (or mercki, merki)
    Kaup, 1841
  • R. m. var. brachycephala
    Schroeder, 1903
  • R. (Tichorhinus) merckii
    (Kaup, 1841)
  • Stephanorhinus yunchuchenensis(Chow, 1963)
  • Dicerorhinus nipponicus

Stephanorhinus kirchbergensis, also known as Merck's rhinoceros (or the less commonly, the forest rhinoceros) is an extinct species of rhinoceros belonging to the genus Stephanorhinus from the Early-Middle to Late Pleistocene of Eurasia. Its range spanned from Western Europe to Eastern Asia. Among the last members of the genus, it co-existed alongside Stephanorhinus hemitoechus (the narrow-nosed or steppe rhinoceros) in the western part of its range.

Contents

Description

Comparison of the head angle of Merck's rhinoceros (top) with that of Stephanorhinus hemitoechus and the woolly rhinoceros (middle and bottom, respectively) Skulls of pleistocene rhinos.png
Comparison of the head angle of Merck's rhinoceros (top) with that of Stephanorhinus hemitoechus and the woolly rhinoceros (middle and bottom, respectively)

Merck's rhinoceros was a large rhinoceros, with a body mass in the range of 1,500–3,000 kilograms (3,300–6,600 lb), [1] with a particularly large specimen from Poland reaching an estimated height at the withers of 1.82 metres (6.0 ft). [2] It is one of the largest species of Stephanorhinus, exceeding S. hundsheimensis and S. hemitoechus in size. [3] The bones of the skeleton are robust and massive. The skull of Merck's rhinoceros is elongated, with the septum nasalis ossified only towards its anterior (front) end. The mandibular symphysis is relatively long and the mandible has a horizontal high, thick branch. [4]

Dental anatomy

The enamel of the teeth is very thick, and often bright coloured and smooth, with very thin or absent coronal cement. The buccal (cheek-facing) sides of the teeth often have sub-vertical bluish lines. Tooth dimensions are highly variable in comparison to other Stephanorhinus species. The upper teeth, especially the molars, are much higher towards the buccal side than to the lingual (towards the tongue) side. The ectolophs of the first and second upper molars have shallower folds, especially the fold between the paracone and mesostyle, than those of S. hemitoechus, resulting in a less pronounced undulation. In comparison to other species of Stephanorhinus, the premolars of S. kirchbergensis are mesially (towards the front of the tooth) broad and relatively lingually short. The upper premolar ectoloph folds are shallow, and have narrow anterior valleys. The ectoloph curves strongly mesially and often distally (towards the hind portion of the tooth) towards the inside of the tooth. In both upper molars and premolars, the metalophs and the protolophs are distinctly bulbous. The lower premolars and molars are similar and hard to distinguish. [4]

Taxonomy

The species was named by Georg Friedrich von Jäger in 1839 for Kirchberg an der Jagst in Baden-Württemberg, Germany where the type specimens of the species had been found. [5] It is often known in English (and equivalents in other languages) as Merck's rhinoceros after Carl Heinrich Merck, who gave the initial name to the species in 1784 as Rhinoceros incisivus, that is now considered a nomen oblitum , and who after a widely used junior synonym of the species, Rhinoceros merckii (historically several alternate spellings) was named by Johann Jakob Kaup in 1841. [6]

Merck's rhinoceros belongs to the genus Stephanorhinus, which first appeared in Europe during the Late Pliocene, around 3.5 million years ago, and is known from fossils across Eurasia. Mitochondrial and nuclear genomes obtained from Merck's rhinoceros suggest that its closest living relative is the Sumatran rhinoceros (Dicerorhinus sumatrensis), though it shares a closer common ancestry with the extinct woolly rhinoceros (Coelodonta antiquitatis), from which it suggested to have diverged around 5.5 million years ago. [7]

Relationships among Late Pleistocene and modern rhinoceros genera, based on nuclear DNA, after Liu et al., 2021: [7]

Elasmotheriinae

Elasmotherium sibiricum

Rhinocerotinae

Black rhinoceros (Diceros bicornis)

White Rhinoceros (Ceratotherium simum)

Indian rhinoceros (Rhinoceros unicornis)

Javan rhinoceros (Rhinoceros sondaicus)

Sumatran rhinoceros (Dicerorhinus sumatrensis)

Woolly rhinoceros (Coelodonta antiquitatis)

Merck's rhinoceros ( Stephanorhinus kirchbergensis)

Bayesian morphological phylogeny, after (Pandolfi, 2023) Note: This excludes living African rhinoceros species. [8]

Rhinocerotina
Dicerorhinus

Dihoplus schleiermacheri

"Dihoplus" pikermiensis

Coelodonta
Pliorhinus

Pliorhinus megarhinus

Pliorhinus miguelcrusafonti

Stephanorhinus

Stephanorhinus jeanvireti

Stephanorhinus etruscus

Stephanorhinus hundsheimensis

Stephanorhinus hemitoechus (Narrow-nosed or steppe rhinoceros)

Stephanorhinus kirchbergensis (Merck's or forest rhinoceros)

Distribution and chronology

Distribution

Approximate time averaged range of Stephanorhinus kirchbergensis (red) and Stephanorhinus hemitoechus (blue), with overlapping range in purple. Stephanorhinus kirchbergensis range map.svg
Approximate time averaged range of Stephanorhinus kirchbergensis (red) and Stephanorhinus hemitoechus (blue), with overlapping range in purple.

Its range spans from Europe to East Asia, but appears to be absent from the Iberian Peninsula. [9] [10] It was predominantly present in Europe during interglacial periods where it formed part of the Palaeoloxodon antiquus assemblage, where it occurred alongside the straight-tusked elephant (Palaeoloxodon antquus) and the narrow-nosed rhinoceros (Stephanorhinus hemitoechus). [11] In Europe its range extended northwards to Denmark [12] and southern Britain [9] (though it appears to have been absent from Britain during the Last Interglacial). [13] Its range extended into the Arctic Circle in Eastern Siberia, with a 70–48,000 year old skull known from arctic Yakutia in the Chondon River valley [14] and a late Middle Pleistocene aged lower jaw from the Yana River valley. [15] Teeth are known from caves in Primorsky Krai, suggested to date between 50,000 and 25,000 years ago based on dates of other bones found in the deposit, which are the easternmost known records, [16] along with records from the Middle Pleistocene of western and central Japan (which were previously attributed to the species Dicerorhinus nipponicus). [17] [18] Remains are known from the Caucasus such as from Azokh Cave in Azerbaijan. [19] Previous claimed records from the Levant and North Africa are now thought to erroneous, and attributable to the narrow-nosed rhinoceros or other rhinoceros species. [9] A tooth of S. cf. kirchbergensis of an unknown age is known from the Lut Desert in northeastern Iran. [20] It is fairly common throughout the Pleistocene in North China, [21] but is a rarer component of South Chinese assemblages, [22] being known from around 30 localities in the region. [23] Its range was strongly controlled by glacial cycles, with the species experiencing repeated cycles of expansion and contraction as the ice sheets advanced, this accounts for the relative rarity of its remains in comparison to the woolly rhinoceros. [9]

Chronology

The earliest definitive records of the species are from Zhoukoudian Locality 13, near Beijing in northern China at around the Early-Middle Pleistocene transition approximately 800,000 years ago. [23] Stephanorhinus yunchuchenensis from Shanxi, China, likely represents a junior synonym of S. kirchbergensis, its precise age is uncertain, but it has been suggested to date to the late Early Pleistocene. [24] S. kirchbergensis appears in Europe during the early Middle Pleistocene between 700,000 and 600,000 years ago, where early on it coexisted with another Stephanorhinus species, S. hundsheimensis. [13]

During the Last Glacial Period, the species range contracted. The timing of its extinction in Europe is uncertain, thought it postdates the end of the Last Interglacial around 115,000 years ago. [25] Radiocarbon dated remains from the Altai date to around 40,000 years ago. [26] The youngest reliable records in China are from the Rhino Cave in Hubei, which is early Late Pleistocene in age. [22] Though less definitive remains are known from near Harbin in Heilongjiang, which are thought to be 20 kya in age. [23] Records from Migong Cave just south of the Yangtze River in the Three Gorges area in northeastern Chongqing are suggested to date to MIS 2 (29,000-14,000 years ago). [27]

Ecology

Restoration of two Merck's rhinoceros in open wooded landscape with oak trees during the Eemian interglacial in Europe Stephanorhinus kirchbergensis Eemian landscape.jpg
Restoration of two Merck's rhinoceros in open wooded landscape with oak trees during the Eemian interglacial in Europe

Although the species has been referred to as the "forest rhinoceros", the species showed broad environmental tolerances, inhabiting across its range various environments [20] from open habitats like grassland as well as woodlands and forest. [13] Compared to the narrow-nosed rhinoceros, S. hemitoechus, the Merck's rhinoceros did nonetheless show a preference for denser, forested habitat. [28]

Merck's rhinoceros has been interpreted as a browser or a mixed feeder, consuming both browse such as branches and leaves of trees and shrubs, as well as low-lying vegetation. Its diet appears to have varied according to local conditions, though on average its diet included more browse than S. hemitoechus, which in Europe it often co-existed alongside. [29] [30] [13] Analysis of plant material embedded within teeth from the Neumark-Nord locality in Germany found remains of Populus (poplar or aspen) Quercus (oak), Crataegus (hawthorn), Pyracantha , Urtica (nettles) and Nymphaea (water lilies) as well as indeterminate remains of Betulaceae, Rosaceae, and Poaceae (grass). [1] Preserved plant remains found with the teeth on the arctic Chondon skull included twigs of Salix (willow), Betula (birch) and abundant Larix (larch) alongside fragments of Ericaceae (heather); sedges were notably absent. [14] A specimen from Eemian aged deposits in Gorzów Wielkopolski in Poland had twigs of Corylus (hazel), Carpinus (hornbeam), and Viscum (mistletoe), alongside fruit scales of birch, with hazel and birch dominating amongst the pollen. [29] The pollen from a specimen found at Spinadesco in Italy was dominated (~50%) by trees, particularly Alnus (alder) and Fagus (beech), with Hippophae rhamnoides (sea buckthorn), dominating amongst the shrubs, with around 30% of the total contribution being from a variety of herbaceous plants. [31]

Human exploitation

Evidence has been found at a number of sites for the exploitation and likely hunting of Merck's rhinoceros by archaic humans.

Cut marks are known on bones of S. kirchbergensis from the Guado San Nicola site in central Italy, which dates to the late Middle Pleistocene, around 400–345,000 years ago. [32] Remains of S. kirchbergensis with cut marks have also been reported from the Medzhibozh locality in western Ukraine, dating to MIS 11, around 425–375,000 years ago. [33] At the collapsed cave of Payre in southeast France, dating to the late Middle Pleistocene, numerous remains of rhinoceroses, primarily S. kirchbergensis and to a lesser exent S. hemitoechus have been found, which are suggested to have been accumulated by Neanderthals, and display marks indicative of butchery. Mortality profiles suggest that young and old individuals were preferentially targeted. The abundance of teeth found at the site (though other skull material is largely absent) suggests that the Neanderthals may have been using them as tools. [34] At the Grays Thurrock site in southern Britain, dating to MIS 9 around 300,000 years ago, both S. kirchbergensis and S. hemitoechus are suggested to have been butchered. [35] At the Taubach travertine site in Thuringia, Germany, which dates to the Eemian (approximately 130,000-115,000 years ago) abundant remains of Merck's rhinoceros with cut marks are known. The vast majority of remains were of young subadults, alongside a much smaller number of adults. It has been suggested that the rhinoceroses were killed and butchered on site by Neanderthals. [36]

Related Research Articles

<i>Elasmotherium</i> Genus of extinct rhinoceroses

Elasmotherium is an extinct genus of large rhinoceros endemic to Eastern Europe and Central Asia with isolated finds from East Asia during Late Miocene through to the Late Pleistocene, with the youngest reliable dates around 39,000 years ago. It was the last surviving member of Elasmotheriinae, a distinctive group of rhinoceroses separate from the group that contains living rhinoceros (Rhinocerotinae).

<span class="mw-page-title-main">Woolly rhinoceros</span> Extinct species of rhinoceros of northern Eurasia

The woolly rhinoceros is an extinct species of rhinoceros that inhabited northern Eurasia during the Pleistocene epoch. The woolly rhinoceros was a member of the Pleistocene megafauna. The woolly rhinoceros was covered with long, thick hair that allowed it to survive in the extremely cold, harsh mammoth steppe. It had a massive hump reaching from its shoulder and fed mainly on herbaceous plants that grew in the steppe. Mummified carcasses preserved in permafrost and many bone remains of woolly rhinoceroses have been found. Images of woolly rhinoceroses are found among cave paintings in Europe and Asia. The range of the woolly rhinoceros contracted towards Siberia beginning around 17,000 years ago, with the youngest known records being around 14,000 years old in northeast Siberia, coinciding with the Bølling–Allerød warming, which likely disrupted its habitat, with environmental DNA records possibly extending the range of the species around 9,800 years ago. Its closest living relative is the Sumatran rhinoceros.

<span class="mw-page-title-main">Rhinoceros</span> Family of mammals

A rhinoceros, commonly abbreviated to rhino, is a member of any of the five extant species of odd-toed ungulates in the family Rhinocerotidae; it can also refer to a member of any of the extinct species of the superfamily Rhinocerotoidea. Two of the extant species are native to Africa, and three to South and Southeast Asia.

<i>Diceros</i> Genus of Rhinocerotidae

Diceros is a genus of rhinoceros containing the extant black rhinoceros (Diceros bicornis) and several extinct species.

<i>Dicerorhinus</i> Genus of mammals

Dicerorhinus is a genus of the family Rhinocerotidae, consisting of a single extant species, the two-horned Sumatran rhinoceros, and several extinct species. The genus likely originated from the Late Miocene of central Myanmar. Many species previously placed in this genus probably belong elsewhere.

<i>Ceratotherium</i> Genus of mammals

Ceratotherium is a genus of the family Rhinocerotidae, consisting of a single extant species, the white rhinoceros, as well as several fossil species.

<i>Rhinoceros</i> (genus) Genus of mammals

Rhinoceros is a genus comprising one-horned rhinoceroses. This scientific name was proposed by Swedish taxonomist Carl Linnaeus in 1758. The genus contains two species, the Indian rhinoceros and the Javan rhinoceros. Although both members are threatened, the Javan rhinoceros is one of the most endangered large mammals in the world with only 60 individuals surviving in Java (Indonesia). The word 'rhinoceros' is of Greek origin meaning "nose-horn".

<i>Stegodon</i> Genus of extinct proboscidean

Stegodon is an extinct genus of proboscidean, related to elephants. It was originally assigned to the family Elephantidae along with modern elephants but is now placed in the extinct family Stegodontidae. Like elephants, Stegodon had teeth with plate-like lophs that are different from those of more primitive proboscideans like gomphotheres and mammutids. Fossils of the genus are known from Africa and across much of Asia, as far southeast as Timor. The oldest fossils of the genus are found in Late Miocene strata in Asia, likely originating from the more archaic Stegolophodon, subsequently migrating into Africa. While the genus became extinct in Africa during the Pliocene, Stegodon persisted in South, Southeast and Eastern Asia into the Late Pleistocene.

<i>Coelodonta</i> Extinct genus of rhinoceros

Coelodonta is an extinct genus of Eurasian rhinoceroses that lived from about 3.7 million years to 14,000 years ago, in the Pliocene and the Pleistocene epochs. It is best known from the type species, the woolly rhinoceros, which ranged throughout northern Eurasia during the Pleistocene. The earliest known species, Coelodonta thibetana, lived in Tibet during the Pliocene, with the genus spreading to the rest of Eurasia during the Pleistocene.

<span class="mw-page-title-main">European wild ass</span> Extinct species of mammal

The European wild ass or hydruntine is an extinct equine from the Middle Pleistocene to Late Holocene of Europe and West Asia, and possibly North Africa. It is a member of the subgenus Asinus, and closely related to the living Asiatic wild ass. The specific epithet, hydruntinus, means from Otranto.

<span class="mw-page-title-main">Straight-tusked elephant</span> Extinct species of elephant native to Europe and West Asia

The straight-tusked elephant is an extinct species of elephant that inhabited Europe and Western Asia during the Middle and Late Pleistocene. One of the largest known elephant species, mature fully grown bulls on average had a shoulder height of 4 metres (13 ft) and a weight of 13 tonnes (29,000 lb). Straight-tusked elephants likely lived very similarly to modern elephants, with herds of adult females and juveniles and solitary adult males. The species was primarily associated with temperate and Mediterranean woodland and forest habitats, flourishing during interglacial periods, when its range would extend across Europe as far north as Great Britain and eastwards into Russia, while persisting in southern Europe during glacial periods. Skeletons found in association with stone tools and wooden spears suggest they were scavenged and hunted by early humans, including Homo heidelbergensis and their Neanderthal successors.

<i>Anancus</i> Genus of proboscideans

Anancus is an extinct genus of "tetralophodont gomphothere" native to Afro-Eurasia, that lived from the Tortonian stage of the late Miocene until its extinction during the Early Pleistocene, roughly from 8.5–2 million years ago.

<i>Panthera fossilis</i> Fossil cat

Panthera fossilis is an extinct species of cat belonging to the genus Panthera, known from remains found in Eurasia spanning the Middle Pleistocene and possibly into the Early Pleistocene.

<span class="mw-page-title-main">Swanscombe Palaeolithic site</span> Archaeological site in England

Swanscombe Skull Site or Swanscombe Heritage Park is a 3.9-hectare (9.6-acre) geological Site of Special Scientific Interest in Swanscombe, north-west Kent, England. It contains two Geological Conservation Review sites and a National Nature Reserve. The park lies in a former gravel quarry, Barnfield Pit, which is the most important site in the Swanscombe complex, alongside several other nearby pits.

<i>Stephanorhinus</i> Extinct genus of rhinoceros

Stephanorhinus is an extinct genus of two-horned rhinoceros native to Eurasia and North Africa that lived during the Late Pliocene to Late Pleistocene. Species of Stephanorhinus were the predominant and often only species of rhinoceros in much of temperate Eurasia, especially Europe, for most of the Pleistocene. The last two species of Stephanorhinus – Merck's rhinoceros and the narrow-nosed rhinoceros – went extinct during the last glacial period.

<span class="mw-page-title-main">Narrow-nosed rhinoceros</span> Extinct species of rhinoceros

The narrow-nosed rhinoceros, also known as the steppe rhinoceros is an extinct species of rhinoceros belonging to the genus Stephanorhinus that lived in western Eurasia, including Europe, as well as North Africa during the Pleistocene. It first appeared in Europe around 500,000 years ago during the Middle Pleistocene and survived there until at least 34,000 years Before Present. It was native to temperate and Mediterranean environments, where it fed on low growing plants and to a lesser extent woody plants. Evidence has been found that it was exploited for food by archaic humans, including Neanderthals.

<i>Bubalus murrensis</i> Extinct species of mammal

Bubalus murrensis, also known as European water buffalo, is an extinct water buffalo species native to Europe during the Pleistocene epoch, possibly persisting into the Holocene.

<i>Nesorhinus</i> Extinct genus of rhinoceros from the Pleistocene of the Philippines and Taiwan

Nesorhinus is an extinct genus of rhinoceros from the Pleistocene of Asia. It contains two species, Nesorhinus philippinensis from Luzon, Philippines and Nesorhinus hayasakai from Taiwan.

<i>Dihoplus</i> Extinct genus of rhinoceros

Dihoplus is an extinct genus of rhinoceros that lived in Eurasia from the Late Miocene to Pliocene.

<i>Pliorhinus</i> Extinct genus of rhinoceros

Pliorhinus is an extinct genus of rhinoceros known from the Late Miocene and Pliocene of Eurasia. The type species, Pliorhinus megarhinus, was previously assigned to Dihoplus.

References

  1. 1 2 Jan van der Made und René Grube: The rhinoceroses from Neumark-Nord and their nutrition. In: Harald Meller (Hrsg.): Elefantenreich – Eine Fossilwelt in Europa. Halle/Saale 2010, S. 382–394
  2. Sobczyk, Artur; Borówka, Ryszard K.; Badura, Janusz; Stachowicz-Rybka, Renata; Tomkowiak, Julita; Hrynowiecka, Anna; Sławińska, Joanna; Tomczak, Michał; Pitura, Mateusz; Lamentowicz, Mariusz; Kołaczek, Piotr (May 2020). "Geology, stratigraphy and palaeoenvironmental evolution of the Stephanorhinus kirchbergensis -bearing Quaternary palaeolake(s) of Gorzów Wielkopolski (NW Poland, Central Europe)". Journal of Quaternary Science. 35 (4): 539–558. Bibcode:2020JQS....35..539S. doi:10.1002/jqs.3198. hdl: 10261/237944 . ISSN   0267-8179. S2CID   216264117.
  3. Saarinen, J; Eronen, J; Fortelius, M; Seppä, H; Lister, A (2016). "Patterns of diet and body mass of large ungulates from the Pleistocene of Western Europe, and their relation to vegetation". Palaeontologia Electronica. doi: 10.26879/443 . ISSN   1094-8074.
  4. 1 2 Selected records of Stephanorhinus kirchbergensis (Jäger, 1839 (Mammalia, Rhinocerotidae) in Italy Emmanuel M.E. BILLIA & Carmelo PETRONIO Bollettino della Società Paleontologica Italiana, 48 (1), 2009, xx-xx. Modena
  5. Georg Friedrich Jäger: Über die fossilen Säugetiere welche in Württemberg in verschiedenen Formationen aufgefunden worden sind, nebst geognostischen Bemerkungen über diese Formationen. C. Erhard Verlag, Stuttgart, 1835–39
  6. Johann Jakob Kaup: Akten der Urwelt oder Osteologie der urweltlichen Säugethiere und Amphibien. Darmstadt, Verlag des Herausgebers, 1841
  7. 1 2 Liu, Shanlin; Westbury, Michael V.; Dussex, Nicolas; Mitchell, Kieren J.; Sinding, Mikkel-Holger S.; Heintzman, Peter D.; Duchêne, David A.; Kapp, Joshua D.; von Seth, Johanna; Heiniger, Holly; Sánchez-Barreiro, Fátima (16 September 2021). "Ancient and modern genomes unravel the evolutionary history of the rhinoceros family". Cell. 184 (19): 4874–4885.e16. doi: 10.1016/j.cell.2021.07.032 . hdl: 10230/48693 . PMID   34433011. S2CID   237273079.
  8. Pandolfi, Luca (2023-01-19). "Reassessing the phylogeny of Quaternary Eurasian Rhinocerotidae". Journal of Quaternary Science. 38 (3): 291–294. Bibcode:2023JQS....38..291P. doi:10.1002/jqs.3496. hdl: 11563/163194 . ISSN   0267-8179.
  9. 1 2 3 4 Billa, E.M.E. 2011a. Occurrences of Stephanorhinus kirchbergensis (Jäger, 1839) (Mammalia, Rhinocerotidae) in Eurasia - An account. Acta Palaeontologica Romaniae 7: 17-40
  10. Billia, E.M.E., Zervanová, J., 2015. New Stephanorhinus kirchbergensis(Mammalia, Rhinocerotidae) records in Eurasia. Addenda to a previous work. Gortania.Geologia, Paleontologia, Paletnologia36, 55–68.
  11. Pushkina, Diana (July 2007). "The Pleistocene easternmost distribution in Eurasia of the species associated with the Eemian Palaeoloxodon antiquus assemblage". Mammal Review. 37 (3): 224–245. doi:10.1111/j.1365-2907.2007.00109.x. ISSN   0305-1838.
  12. Billia, E.M.E. and Zervanovȧ, J., New Stephanorhinus kirchbergensis (Jäger, 1839) (Mammalia, Rhinocerotidae) records in Eurasia. Addenda to a previous work, Geol., Paleontol., Paletnol., 2015, vol. 36, pp. 55–68.
  13. 1 2 3 4 van Asperen, Eline N.; Kahlke, Ralf-Dietrich (January 2015). "Dietary variation and overlap in Central and Northwest European Stephanorhinus kirchbergensis and S. hemitoechus (Rhinocerotidae, Mammalia) influenced by habitat diversity" (PDF). Quaternary Science Reviews. 107: 47–61. doi:10.1016/j.quascirev.2014.10.001. S2CID   83801422.
  14. 1 2 Kirillova, Irina V.; Chernova, Olga F.; van der Made, Jan; Kukarskih, Vladimir V.; Shapiro, Beth; van der Plicht, Johannes; Shidlovskiy, Fedor K.; Heintzman, Peter D.; van Kolfschoten, Thijs; Zanina, Oksana G. (November 2017). "Discovery of the skull of Stephanorhinus kirchbergensis (Jäger, 1839) above the Arctic Circle". Quaternary Research. 88 (3): 537–550. Bibcode:2017QuRes..88..537K. doi:10.1017/qua.2017.53. ISSN   0033-5894. S2CID   45478220.
  15. Shpansky, A. V.; Boeskorov, G. G. (July 2018). "Northernmost Record of the Merck's Rhinoceros Stephanorhinus kirchbergensis (Jäger) and Taxonomic Status of Coelodonta jacuticus Russanov (Mammalia, Rhinocerotidae)". Paleontological Journal. 52 (4): 445–462. Bibcode:2018PalJ...52..445S. doi:10.1134/S003103011804010X. ISSN   0031-0301. S2CID   91447285.
  16. Kosintsev, P. A.; Zykov, S. V.; Tiunov, M. P.; Shpansky, A. V.; Gasilin, V. V.; Gimranov, D. O.; Devjashin, M. M. (March 2020). "The First Find of Merck's Rhinoceros (Mammalia, Perissodactyla, Rhinocerotidae, Stephanorhinus kirchbergensis Jäger, 1839) Remains in the Russian Far East". Doklady Biological Sciences. 491 (1): 47–49. doi:10.1134/S0012496620010032. ISSN   0012-4966. PMID   32483707. S2CID   219156923.
  17. Handa, Naoto; Pandolfi, Luca (July 2016). "Reassessment of the Middle Pleistocene Japanese Rhinoceroses (Mammalia, Rhinocerotidae) and Paleobiogeographic Implications". Paleontological Research. 20 (3): 247–260. doi:10.2517/2015PR034. ISSN   1342-8144.
  18. Handa, Naoto; Takahashi, Keiichi (October 2024). "A review of the taxonomy, biostratigraphy and paleobiogeography of Plio-Pleistocene rhinoceroses in Japan". Journal of Asian Earth Sciences: 106357. doi:10.1016/j.jseaes.2024.106357.
  19. Van der Made, Jan; Torres, Trinidad; Ortiz, Jose Eugenio; Moreno-Pérez, Laura; Fernández-Jalvo, Yolanda (2016), Fernández-Jalvo, Yolanda; King, Tania; Yepiskoposyan, Levon; Andrews, Peter (eds.), "The New Material of Large Mammals from Azokh and Comments on the Older Collections", Azokh Cave and the Transcaucasian Corridor, Cham: Springer International Publishing, pp. 117–162, doi:10.1007/978-3-319-24924-7_6, ISBN   978-3-319-24922-3 , retrieved 2024-08-23
  20. 1 2 Hashemi, N; Ashouri, A; Aliabadian, M; M. Gharaie, M; Sánchez Marco, A; Louys, J (2016). "First report of Quaternary mammals from the Qalehjough area, Lut Desert, Eastern Iran". Palaeontologia Electronica. doi: 10.26879/539 . ISSN   1094-8074.
  21. Antoine, Pierre-Olivier (March 2012). "Pleistocene and Holocene rhinocerotids (Mammalia, Perissodactyla) from the Indochinese Peninsula". Comptes Rendus Palevol. 11 (2–3): 159–168. Bibcode:2012CRPal..11..159A. doi:10.1016/j.crpv.2011.03.002.
  22. 1 2 Tong, HaoWen; Wu, XianZhu (April 2010). "Stephanorhinus kirchbergensis (Rhinocerotidae, Mammalia) from the Rhino Cave in Shennongjia, Hubei". Chinese Science Bulletin. 55 (12): 1157–1168. Bibcode:2010ChSBu..55.1157T. doi:10.1007/s11434-010-0050-5. ISSN   1001-6538. S2CID   67828905.
  23. 1 2 3 Tong, Hao-wen (November 2012). "Evolution of the non-Coelodonta dicerorhine lineage in China". Comptes Rendus Palevol. 11 (8): 555–562. Bibcode:2012CRPal..11..555T. doi:10.1016/j.crpv.2012.06.002.
  24. Pandolfi, Luca (December 2022). "A critical overview on Early Pleistocene Eurasian Stephanorhinus (Mammalia, Rhinocerotidae): Implications for taxonomy and paleobiogeography". Quaternary International. 674–675: 109–120. doi:10.1016/j.quaint.2022.11.008.
  25. Stefaniak, Krzysztof; Kotowski, Adam; Badura, Janusz; Sobczyk, Artur; Borówka, Ryszard K.; Stachowicz-Rybka, Renata; Moskal-del Hoyo, Magdalena; Hrynowiecka, Anna; Tomkowiak, Julita; Sławińska, Joanna; Przybylski, Bogusław; Ciszek, Dariusz; Alexandrowicz, Witold Paweł; Skoczylas-Śniaz, Sylwia; Ratajczak-Skrzatek, Urszula (2023-05-09). "A skeleton of peat-trapped forest rhinoceros Stephanorhinus kirchbergensis (Jäger, 1839) from Gorzów Wielkopolski, Northwestern Poland: a record of life and death of the Eemian large mammals". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 308 (1): 45–77. doi:10.1127/njgpa/2023/1129. ISSN   0077-7749.
  26. Kirillova, I. V.; Vershinina, A. O.; Zazovskaya, E. P.; Zanina, O. G.; Cutler, S.; Kosintsev, P. A.; Lapteva, E. G.; Chernova, O. F.; Shapiro, B. (December 2021). "On Time and Environment of Stephanorhinus kirchbergensis Jäger 1839 (Mammalia, Rhinoceratidae) in Altai and Northeastern Russia". Biology Bulletin. 48 (9): 1674–1687. Bibcode:2021BioBu..48.1674K. doi:10.1134/S1062359021090077. ISSN   1062-3590.
  27. Pang, Libo; Chen, Shaokun; Huang, Wanbo; Wu, Yan; Wei, Guangbiao (April 2017). "Paleoenvironmental and chronological analysis of the mammalian fauna from Migong Cave in the Three Gorges Area, China". Quaternary International. 434: 25–31. Bibcode:2017QuInt.434...25P. doi:10.1016/j.quaint.2014.11.039.
  28. Pushkina, Diana; Bocherens, Hervé; Ziegler, Reinhard (7 August 2014). "Unexpected palaeoecological features of the Middle and Late Pleistocene large herbivores in southwestern Germany revealed by stable isotopic abundances in tooth enamel". Quaternary International . 339–340: 164–178. Bibcode:2014QuInt.339..164P. doi:10.1016/j.quaint.2013.12.033 . Retrieved 30 September 2024 via Elsevier Science Direct.
  29. 1 2 Stefaniak, Krzysztof; Stachowicz-Rybka, Renata; Borówka, Ryszard K.; Hrynowiecka, Anna; Sobczyk, Artur; Moskal-del Hoyo, Magdalena; Kotowski, Adam; Nowakowski, Dariusz; Krajcarz, Maciej T.; Billia, Emmanuel M.E.; Persico, Davide (September 2020). "Browsers, grazers or mix-feeders? Study of the diet of extinct Pleistocene Eurasian forest rhinoceros Stephanorhinus kirchbergensis (Jäger, 1839) and woolly rhinoceros Coelodonta antiquitatis (Blumenbach, 1799)". Quaternary International. 605–606: 192–212. doi:10.1016/j.quaint.2020.08.039. hdl: 10261/255910 . S2CID   224984977.
  30. Pandolfi, Luca; Bartolini-Lucenti, Saverio; Cirilli, Omar; Bukhsianidze, Maia; Lordkipanidze, David; Rook, Lorenzo (July 2021). "Paleoecology, biochronology, and paleobiogeography of Eurasian Rhinocerotidae during the Early Pleistocene: The contribution of the fossil material from Dmanisi (Georgia, Southern Caucasus)". Journal of Human Evolution. 156: 103013. Bibcode:2021JHumE.15603013P. doi:10.1016/j.jhevol.2021.103013. PMID   34030060.
  31. Burkanova, Elena M.; Billia, Emmanuel M.E.; Persico, Davide (July 2020). "Stephanorhinus kirchbergensis (Jäger, 1839) (Mammalia, Rhinocerotidae) from the Po valley (Lombardia, Northern Italy): possible diet/nutrition and living conditions". Quaternary International. 554: 164–169. Bibcode:2020QuInt.554..164B. doi:10.1016/j.quaint.2020.07.031. ISSN   1040-6182. S2CID   225542965.
  32. Berruti, Gabriele Luigi Francesco; Arzarello, Marta; Ceresa, Allison; Muttillo, Brunella; Peretto, Carlo (December 2020). "Use-Wear Analysis of the Lithic Industry of the Lower Palaeolithic Site of Guado San Nicola (Isernia, Central Italy)". Journal of Paleolithic Archaeology. 3 (4): 794–815. Bibcode:2020JPalA...3..794B. doi:10.1007/s41982-020-00056-3. ISSN   2520-8217.
  33. Stepanchuk, V.N.; Moigne, A.-M. (July 2016). "MIS 11-locality of Medzhibozh, Ukraine: Archaeological and paleozoological evidence". Quaternary International. 409: 241–254. Bibcode:2016QuInt.409..241S. doi:10.1016/j.quaint.2015.09.050.
  34. Daujeard, Camille; Daschek, Eva J.; Patou‑Mathis, Marylène; Moncel, Marie‑Hélène (2018-09-01). "Les néandertaliens de Payre (Ardèche, France) ont-ils chassé le rhinocéros ?". Quaternaire (in French). 29 (3): 217–231. doi:10.4000/quaternaire.10196. ISSN   1142-2904.
  35. Parfitt, Simon A. (2022-09-12). "A Middle Pleistocene Butchery Site at Great Yeldham, Essex, UK: Identifying Butchery Strategies and Implications for Mammalian Faunal History". Journal of Paleolithic Archaeology. 5 (1): 11. Bibcode:2022JPalA...5...11P. doi: 10.1007/s41982-022-00122-y . ISSN   2520-8217.
  36. Bratlund, B. 1999. Taubach revisited. Jahrbuch des Römisch-Germanischen Zentralmuseums Mainz 46: 61-174.