Stephanorhinus

Last updated

Stephanorhinus
Temporal range: Late Pliocene to Late Pleistocene 3.4–0.04  Ma
O
S
D
C
P
T
J
K
Pg
N
Stephanorhinus etruscus skeleton 23 (cropped).jpg
Stephanorhinus etruscus skeleton
Abhandlungen der Geologischen Bundesanstalt (1902) (16144915223).jpg
Stephanorhinus hundsheimensis skeleton
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Perissodactyla
Family: Rhinocerotidae
Tribe: Dicerorhinini
Genus: Stephanorhinus
Kretzoi, 1942
Type species
Rhinoceros etruscus
Falconer, 1868
Species
  • S. etruscus
    (Falconer, 1868) Etruscan rhinoceros
  • S. hemitoechus
    (Falconer, 1859) Narrow-nosed rhinoceros
  • S. hundsheimensis
    (Toula, 1902) Hundsheim rhinoceros
  • S. jeanvireti
    (Falconer, 1859)
  • S. kirchbergensis
    (Jäger, 1839) Merck's rhinoceros
  • S. lantianensis
    (Hu and Qi, 1978)
  • S. yunchuchenensis
    (Chow, 1963)

Stephanorhinus is an extinct genus of two-horned rhinoceros native to Eurasia and North Africa that lived during the Late Pliocene to Late Pleistocene. Species of Stephanorhinus were the predominant and often only species of rhinoceros in much of temperate Eurasia, especially Europe, for most of the Pleistocene. The last two species of StephanorhinusMerck's rhinoceros (S. kirchbergensis) and the narrow-nosed rhinoceros (S. hemitoechus) – went extinct during the last glacial period.

Contents

Etymology

The first part of the name, Stephano-, honours Stephen I, the first king of Hungary. [1] (The genus name was coined by Kretzoi, a Hungarian.) The second part is from rhinos (Greek for "nose"), a typical suffix of rhinoceros genus names.

Taxonomy

The taxonomic history of Stephanorhinus is long and convoluted, as many species are known by numerous synonyms and different genera – typically Rhinoceros and Dicerorhinus – for the 19th and most of the early 20th century. [2] The genus was named by Miklós Kretzoi in 1942. [3] Genomes obtained from Stephanorhinus kirchbergensis suggests that Stephanorhinus is more closely related to Dicerorhinus (which contains the living Sumatran rhinoceros) and Coelodonta (which contains the woolly rhinoceros), than it is to other living rhinoceroses, and is more closely related to Coelodonta than to Dicerorhinus, with the date of divergence between Coelodonta and Stephanorhinus estimated at around 5.5 million years ago, with the estimated split between their last common ancestor and Dicerorhinus estimated at around 9.4 million years ago. [4] The genus is also closely related to the fossil rhinoceros genera Dihoplus and Pliorhinus , known from the Late Miocene and Pliocene of Eurasia, which may be ancestral to Stephanorhinus. [5] Although a study based on dental proteomes suggested that the genus was paraphyletic with respect to Coelodonta, [6] a 2023 morphological study recovered Stephanorhinus as monophyletic. [5]

Placement of Stephanorhinus kirchbergensis among recent and subfossil rhinoceros species based on nuclear genomes (Liu, 2021): [4]

Elasmotheriinae

Elasmotherium sibiricum

Rhinocerotinae

Black rhinoceros (Diceros bicornis)

White Rhinoceros (Ceratotherium simum)

Indian rhinoceros (Rhinoceros unicornis)

Javan rhinoceros (Rhinoceros sondaicus)

Sumatran rhinoceros (Dicerorhinus sumatrensis)

Woolly rhinoceros (Coelodonta antiquitatis)

Merck's rhinoceros (Stephanorhinus kirchbergensis)

Bayesian morphological phylogeny (Pandolfi, 2023) Note: This excludes living African rhinoceros species. [5]

Hyrachyus eximius

Tapirus terrestris (South American tapir)

Rhinocerotidae

Trigonias osborni

Ronzotherium filholi

Aceratheriini
Teleoceratina
Rhinocerotina

Description

Species of Stephanorhinus were large-sized rhinoceroses with proportionally long (dolichocephalic) skulls. They had two horns, a frontal and a nasal horn. The nasal septum was partially ossified (turned to bone), which connected the nasal bones with the premaxillary bones. The incisors were either lost completely or very heavily reduced in size. [2]

Species and evolution

The oldest known species of the genus are from the Pliocene of Europe. The species "S." pikermiensis and "S." megarhinus that were formerly considered to belong to Stephanorhinus are currently considered to belong to Dihoplus and Pliorhinus , respectively. [7] [8] [9] Stephanorhinusmiguelcrusafonti from the Early Pliocene of Western Europe has also been assigned to Pliorhinus in recent studies. [8]

The position of Stephanorhinus? africanus from the Middle Pliocene of Tunisia and Chad is uncertain. [10] Some authors have suggested that Stephanorhinus likely originated from members of the genus Pliorhinus. [5]

Stephanorhinus jeanvireti, also known as S. elatus [11] is known from the Late Pliocene and Early Pleistocene of Europe. Its remains are relatively rare in comparison to other Stephanorhinus species. Specimens are known from the Late Pliocene of Germany, [12] France, Italy, [13] Slovakia [14] and Greece, [15] and the Early Pleistocene of Romania, [16] with its temporal span being around 3.4 to 2 million years ago. [5]

Stephanorhinus etruscus first appears in the latest Pliocene in the Iberian Peninsula, around 3.3 million years ago (Ma) at Las Higueruelas in Spain and before 3 Ma at Piedrabuena, and during the latest Pliocene at Villafranca d’Asti and Castelnuovo di Berardenga in Italy and is abundant during most of the Villafranchian period in Europe, and is the sole rhinoceros species in Europe between 2.5 and around 1.3 Ma. A specimen is known from the Early Pleistocene (1.6-1.2 Ma) Ubeidiya locality in Israel. During the late Early Pleistocene, it is largely replaced by S. hundsheimensis. The last known records of the species are from the latest Early Pleistocene of the Iberian peninsula, around 0.9-0.8 Ma. [17] Stephanorhinus etruscus is thought to have had a browsing based diet. [18]

Stephanorhinus migrated from its origin in western Eurasia into eastern Eurasia during the Early Pleistocene. [5] Stephanorhinus yunchuchenensis is known from a single specimen in probably late Early Pleistocene aged deposits in Yushe, Shaanxi, China, while Stephanorhinus lantianensis is also known from a single specimen from late Early Pleistocene (1.15 Ma) deposits in Lantian, also in Shaanxi. [19] These may be synonymous with other named Stephanorhinus species, with a 2022 study suggesting that they were likely synonyms of S. kirchbergensis and S. etruscus respectively. [20]

The first definitive record of Stephanorhinus kirchbergensis (Merck's rhinoceros) is in China at Zhoukoudian (Choukoutien; near Beijing), around the Early–Mid-Pleistocene transition at 0.8 Ma. [19]

Stephanorhinus hundsheimensis first definitively appears in the fossil record in Europe and Anatolia at around 1.2 Ma, with possible records in Iberia around 1.6 Ma and 1.4-1.3 Ma. The earliest confirmed appearance in Italy around 1 Ma. [21] The diet of S. hundsheimensis was flexible and ungeneralised, with two different early Middle Pleistocene populations under different climatic regimes (having tooth wear analyses suggesting contrasting browsing and grazing habits). [22] The more specialised S. kirchbergensis and S. hemitoechus , appear in Europe between 0.7-6 Ma and 0.6-0.5 Ma respectively. S. kirchbergensis and S. hemitoechus are typically interpreted mixed feeders tending towards browsing and grazing, respectively. The evolution of more specialized diets is possibly due to the change to the 100 Kyr cycle after the Mid-Pleistocene Transition, which resulted in environmental stability allowing the development of more specialized forms. [23]

Stephanorhinus hundsheimensis is typically suggested to have gone extinct at around 0.5 Ma, [5] though a 2023 study suggested that the species may have persisted as recently as the latest Middle Pleistocene-earliest Late Pleistocene around 130,000 years ago, based on fossils found in Spain. [24]

S. kirchbergensis was broadly distributed over northern Eurasia from Western Europe to East Asia and the Russian Far East, while S. hemitoechus was generally confined to the western Palearctic, including Europe and North Africa. [25] [26] [10]

In Europe, the timing of the extinction of S. kirchbergensis is uncertain, though it is sometime after 115,000 years ago. [27] The latest records of S. hemitoechus are known from the Iberian Peninsula, where they survived until at least 34,000 years ago. [28] In the Altai region, S. kirchbergensis survived until at least 40,000 years ago. [29] In South China, the species may have survived into Marine Isotope Stage 2 (~29-14,000 years ago). [30]

Relationship with humans

Remains of several Stephanorhinus species, including S. kirchbergensis and S. hemitoechus, have been found in sites across Europe with break or cut marks indicating that they were butchered by archaic humans. [31] [32] [33] [34] [35]

Related Research Articles

<i>Elasmotherium</i> Genus of extinct rhinoceroses

Elasmotherium is an extinct genus of large rhinoceros endemic to Eurasia during Late Miocene through to the Late Pleistocene, with the youngest reliable dates around 39,000 years ago. It was the last surviving member of Elasmotheriinae, a distinctive group of rhinoceroses separate from the group that contains living rhinoceros (Rhinocerotinae).

<span class="mw-page-title-main">Woolly rhinoceros</span> Extinct species of rhinoceros of northern Eurasia

The woolly rhinoceros, simply known as woolly rhino, is an extinct species of rhinoceros that inhabited northern Eurasia during the Pleistocene epoch. The woolly rhinoceros was a member of the Pleistocene megafauna. The woolly rhinoceros was covered with long, thick hair that allowed it to survive in the extremely cold, harsh mammoth steppe. It had a massive hump reaching from its shoulder and fed mainly on herbaceous plants that grew in the steppe. Mummified carcasses preserved in permafrost and many bone remains of woolly rhinoceroses have been found. Images of woolly rhinoceroses are found among cave paintings in Europe and Asia. The species range contracted towards Siberia beginning around 17,000 years ago, with the youngest known records being around 14,000 years old in northeast Siberia, coinciding with the Bølling–Allerød warming, which likely disrupted its habitat.

<span class="mw-page-title-main">Rhinoceros</span> Family of mammals

A rhinoceros, commonly abbreviated to rhino, is a member of any of the five extant species of odd-toed ungulates in the family Rhinocerotidae; it can also refer to a member of any of the extinct species of the superfamily Rhinocerotoidea. Two of the extant species are native to Africa, and three to South and Southeast Asia.

<i>Diceros</i> Genus of Rhinocerotidae

Diceros is a genus of rhinoceros containing the extant black rhinoceros (Diceros bicornis) and several extinct species.

<i>Dicerorhinus</i> Genus of mammals

Dicerorhinus is a genus of the family Rhinocerotidae, consisting of a single extant species, the two-horned Sumatran rhinoceros, and several extinct species. The genus likely originated in the Mid to Late Pliocene of Northern Indochina and South China. Many species previously placed in this genus probably belong elsewhere.

<i>Ceratotherium</i> Genus of mammals

Ceratotherium is a genus of the family Rhinocerotidae, consisting of a single extant species, the white rhinoceros, and its extinct relative Ceratotherium mauritanicum, of which Ceratotherium efficax is considered a synonym. Another species known as Ceratotherium praecox is now considered a member of the related genus Diceros. The placement of Ceratotherium neumayri from the Late Miocene of Europe and Western Asia within the genus has been questioned, with other authors assigning it to the separate genus Miodiceros. The species 'Ceratotherium’ advenientis is known from the Late Miocene of Italy.

<i>Rhinoceros</i> (genus) Genus of mammals

Rhinoceros is a genus comprising one-horned rhinoceroses. This scientific name was proposed by Swedish taxonomist Carl Linnaeus in 1758. The genus contains two species, the Indian rhinoceros and the Javan rhinoceros. Although both members are threatened, the Javan rhinoceros is one of the most endangered large mammals in the world with only 60 individuals surviving in Java (Indonesia). The word 'rhinoceros' is of Greek origin meaning "nose-horn".

<i>Coelodonta</i> Extinct genus of rhinoceros

Coelodonta is an extinct genus of rhinoceros that lived in Eurasia between 3.7 million years to 14,000 years ago, in the Pliocene and the Pleistocene epochs. It is best known from the type species, the woolly rhinoceros, which ranged throughout northern Eurasia during the Pleistocene. The earliest known species, Coelodonta thibetana, lived in Tibet during the Pliocene, with the genus spreading to the rest of Eurasia during the Pleistocene.

<i>Anancus</i> Genus of proboscideans

Anancus is an extinct genus of "tetralophodont gomphothere" native to Afro-Eurasia, that lived from the Tortonian stage of the late Miocene until its extinction during the Early Pleistocene, roughly from 8.5–2 million years ago.

<i>Coelodonta tologoijensis</i> Extinct species of mammal

Coelodonta tologoijensis is an extinct species of rhinoceros belonging to the genus Coelodonta, related to the woolly rhinoceros. It is known from fossils found in Siberia and Mongolia, dating from the Early Pleistocene to Middle Pleistocene. One skull found in the Kyffhauser hills near the town of Bad Frankenhausen, Germany, dating to approximately 450,000 years was formerly assigned to the species by researchers, which would have made it the earliest known member of Coelodonta in Europe, However, a 2022 study refuted the assignment of the Bad Frankenhausen skull to C. tologoijensis, interpreting it as the skull of the woolly rhinoceros instead, meaning that the species is currently confined to Asia.

The European Land Mammal Mega Zones are zones in rock layers that have a specific assemblage of fossils (biozones) based on occurrences of fossil assemblages of European land mammals. These biozones cover most of the Cenozoic, with particular focus having been paid to the Neogene and Paleogene systems, the Quaternary has several competing systems. In cases when fossils of mammals are abundant, stratigraphers and paleontologists can use these biozones as a more practical regional alternative to the stages of the official ICS geologic timescale. European Land Mammal Mega Zones are often also confusingly referred to as ages, stages, or intervals.

Ceratotherium mauritanicum is a species of fossil African rhinoceros found in the Late Pliocene to early Late Pleistocene of Morocco, Tunisia, and Algeria. It is disputed as to whether remains from the Pliocene of East Africa belong to this species, and if so, whether C. mauritanicum is ancestral to the modern white rhinoceros. During the early Late Pleistocene, sometime between 120,000–57,000 years ago, it was replaced in North Africa by the modern white rhinoceros.

<i>Ceratotherium neumayri</i> Extinct species of rhinoceros

Ceratotherium neumayri is a fossil species of rhinoceros from the Late Miocene (Vallesian-Turolian) of the Balkans and Western Asia, with remains known from Greece, Bulgaria, Iran, and Anatolia in Turkey.

<i>Ursus etruscus</i> Extinct species of carnivore

Ursus etruscus is an extinct species of bear, endemic to Europe, Asia and North Africa during the Pliocene through Pleistocene, living from ~5.3 million to 100,000 years ago.

<i>Brachypotherium</i> Extinct genus of rhinoceros

Brachypotherium is an extinct genus of rhinocerotid that lived in Eurasia and Africa during the Miocene. A first upper decidual molar referrable to Brachypotherium brachypus was found during gold mining in New Caledonia during the 19th century, being misidentified as a species of marsupial known as Zygomaturus. However, rhinoceros were never native to New Caledonia, and the tooth was probably used as jewelry by a French convict deported there.

<span class="mw-page-title-main">Narrow-nosed rhinoceros</span> Extinct species of rhinoceros

The narrow-nosed rhinoceros, also known as the steppe rhinoceros is an extinct species of rhinoceros belonging to the genus Stephanorhinus that lived in western Eurasia, including Europe, as well as North Africa during the Pleistocene. It first appeared in Europe some 600,000 years ago during the Middle Pleistocene and survived there until at least 34,000 years Before Present.

<i>Stephanorhinus kirchbergensis</i> Extinct species of mammal

Stephanorhinus kirchbergensis, also known as Merck's rhinoceros or the forest rhinoceros, is an extinct species of rhinoceros belonging to the genus Stephanorhinus from the Middle to Late Pleistocene of Eurasia. Its range spanned from western Europe to eastern Asia. Among the last members of the genus, it co-existed alongside Stephanorhinus hemitoechus in the western part of its range.

<i>Canis etruscus</i> Extinct species of carnivore

Canis etruscus, the Etruscan wolf, is an extinct species of canine that was endemic to Mediterranean Europe during the Early Pleistocene. The Etruscan wolf is described as a small wolf-like dog.

<i>Dihoplus</i> Extinct genus of rhinoceros

Dihoplus is an extinct genus of rhinoceros that lived in Eurasia from the Late Miocene to Pliocene.

<i>Pliorhinus</i> Extinct genus of rhinoceros

Pliorhinus is an extinct genus of rhinoceros known from the Late Miocene and Pliocene of Eurasia. The type species, Pliorhinus megarhinus, was previously assigned to Dihoplus.

References

  1. Tong, HaoWen; Wu, XianZhu (April 2010). "Stephanorhinus kirchbergensis (Rhinocerotidae, Mammalia) from the Rhino Cave in Shennongjia, Hubei". Chinese Science Bulletin. 55 (12): 1157–1168. Bibcode:2010ChSBu..55.1157T. doi:10.1007/s11434-010-0050-5. ISSN   1001-6538. S2CID   67828905.
  2. 1 2 Giaourtsakis, Ioannis X. (2022), Vlachos, Evangelos (ed.), "The Fossil Record of Rhinocerotids (Mammalia: Perissodactyla: Rhinocerotidae) in Greece", Fossil Vertebrates of Greece Vol. 2, Cham: Springer International Publishing, pp. 409–500, doi:10.1007/978-3-030-68442-6_14, ISBN   978-3-030-68441-9, S2CID   239883886 , retrieved 2023-11-19
  3. Miklós Kretzoi: Bemerkungen zur System der Nachmiozänen Nashorn-Gattungen (Comments on the system of the post Miocene rhinoceros genera) Földtani Közlöni, Budapest 72 (4-12), 1942, S. 309–318
  4. 1 2 Liu, Shanlin; Westbury, Michael V.; Dussex, Nicolas; Mitchell, Kieren J.; Sinding, Mikkel-Holger S.; Heintzman, Peter D.; Duchêne, David A.; Kapp, Joshua D.; von Seth, Johanna; Heiniger, Holly; Sánchez-Barreiro, Fátima (August 2021). "Ancient and modern genomes unravel the evolutionary history of the rhinoceros family". Cell. 184 (19): 4874–4885.e16. doi: 10.1016/j.cell.2021.07.032 . hdl: 10230/48693 . ISSN   0092-8674. PMID   34433011. S2CID   237273079.
  5. 1 2 3 4 5 6 7 Pandolfi, Luca (2023-01-19). "Reassessing the phylogeny of Quaternary Eurasian Rhinocerotidae". Journal of Quaternary Science. 38 (3): 291–294. Bibcode:2023JQS....38..291P. doi: 10.1002/jqs.3496 . hdl: 11563/163194 . ISSN   0267-8179.
  6. Cappellini, Enrico; Welker, Frido; Pandolfi, Luca; Ramos-Madrigal, Jazmín; Samodova, Diana; Rüther, Patrick L.; Fotakis, Anna K.; Lyon, David; Moreno-Mayar, J. Víctor; Bukhsianidze, Maia; Rakownikow Jersie-Christensen, Rosa; Mackie, Meaghan; Ginolhac, Aurélien; Ferring, Reid; Tappen, Martha (2019-09-11). "Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny". Nature. 574 (7776): 103–107. Bibcode:2019Natur.574..103C. doi:10.1038/s41586-019-1555-y. ISSN   0028-0836. PMC   6894936 . PMID   31511700.
  7. Pandolfi, Luca; Rivals, Florent; Rabinovich, Rivka (January 2020). "A new species of rhinoceros from the site of Bethlehem: 'Dihoplus' bethlehemsis sp. nov. (Mammalia, Rhinocerotidae)". Quaternary International. 537: 48–60. Bibcode:2020QuInt.537...48P. doi:10.1016/j.quaint.2020.01.011. S2CID   213080180.
  8. 1 2 Pandolfi, Luca; Sendra, Joaquín; Reolid, Matías; Rook, Lorenzo (June 2022). "New Pliocene Rhinocerotidae findings from the Iberian Peninsula and the revision of the Spanish Pliocene records". PalZ. 96 (2): 343–354. Bibcode:2022PalZ...96..343P. doi: 10.1007/s12542-022-00607-9 . hdl: 2158/1254352 . ISSN   0031-0220.
  9. Pandolfi, Luca; Pierre-Olivier, Antoine; Bukhsianidze, Maia; Lordkipanidze, David; Rook, Lorenzo (2021-08-03). "Northern Eurasian rhinocerotines (Mammalia, Perissodactyla) by the Pliocene–Pleistocene transition: phylogeny and historical biogeography". Journal of Systematic Palaeontology. 19 (15): 1031–1057. Bibcode:2021JSPal..19.1031P. doi:10.1080/14772019.2021.1995907. ISSN   1477-2019. S2CID   244762077.
  10. 1 2 Pandolfi, Luca (2018), "Evolutionary history of Rhinocerotina (Mammalia, Perissodactyla)", Fossilia - Reports in Palaeontology, Saverio Bartolini Lucenti, pp. 27–32, doi: 10.32774/fosreppal.20.1810.102732 , ISBN   979-12-200-3408-1
  11. Ballatore, Manuel; Breda, Marzia (December 2016). "Stephanorhinus elatus (Rhinocerotidae, Mammalia): proposal for the conservation of the earlier specific name and designation of a lectotype". Geodiversitas. 38 (4): 579–594. doi:10.5252/g2016n4a7. ISSN   1280-9659. S2CID   90370988.
  12. Lacombat, Frédéric; Mörs, Thomas (2008-08-01). "The northernmost occurrence of the rare Late Pliocene rhinoceros Stephanorhinus jeanvireti (Mammalia, Perissodactyla)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 249 (2): 157–165. doi:10.1127/0077-7749/2008/0249-0157.
  13. Pandolfi, Luca (October 2013). "New and revised occurrences of Dihoplus megarhinus (Mammalia, Rhinocerotidae) in the Pliocene of Italy". Swiss Journal of Palaeontology. 132 (2): 239–255. Bibcode:2013SwJP..132..239P. doi: 10.1007/s13358-013-0056-0 . ISSN   1664-2376. S2CID   140547755.
  14. Šujan, M., Rybár, S., Šarinová, K., Kováč, M., Vlačiky, M., Zervanová, J., 2013. Uppermost Miocene to Quaternary accumulation history at the Danube Basin eastern flanks, in: Fodor, L., Kövér, Sz. (eds.), 11th Meeting of the Central European Tectonic Studies Group (CETeG). Abstract book, Geol. Geophys. Inst. of Hungary, Budapest, pp. 66-68.
  15. Guérin, Claude; Tsoukala, Evangelia (June 2013). "The Tapiridae, Rhinocerotidae and Suidae (Mammalia) of the Early Villafranchian site of Milia (Grevena, Macedonia, Greece)". Geodiversitas. 35 (2): 447–489. doi:10.5252/g2013n2a7. ISSN   1280-9659. S2CID   129164720.
  16. Pandolfi, Luca; Codrea, Vlad A.; Popescu, Aurelian (December 2019). "Stephanorhinus jeanvireti (Mammalia, Rhinocerotidae) from the early Pleistocene of Colțești (southwestern Romania)". Comptes Rendus Palevol. 18 (8): 1041–1056. Bibcode:2019CRPal..18.1041P. doi: 10.1016/j.crpv.2019.07.004 .
  17. Pandolfi, Luca; Cerdeño, Esperanza; Codrea, Vlad; Kotsakis, Tassos (September 2017). "Biogeography and chronology of the Eurasian extinct rhinoceros Stephanorhinus etruscus (Mammalia, Rhinocerotidae)". Comptes Rendus Palevol. 16 (7): 762–773. Bibcode:2017CRPal..16..762P. doi: 10.1016/j.crpv.2017.06.004 .
  18. Pandolfi, Luca; Bartolini-Lucenti, Saverio; Cirilli, Omar; Bukhsianidze, Maia; Lordkipanidze, David; Rook, Lorenzo (July 2021). "Paleoecology, biochronology, and paleobiogeography of Eurasian Rhinocerotidae during the Early Pleistocene: The contribution of the fossil material from Dmanisi (Georgia, Southern Caucasus)". Journal of Human Evolution. 156: 103013. doi:10.1016/j.jhevol.2021.103013. S2CID   235199139.
  19. 1 2 Tong, Hao-wen (November 2012). "Evolution of the non-Coelodonta dicerorhine lineage in China". Comptes Rendus Palevol. 11 (8): 555–562. Bibcode:2012CRPal..11..555T. doi:10.1016/j.crpv.2012.06.002.
  20. Pandolfi, Luca (December 2022). "A critical overview on Early Pleistocene Eurasian Stephanorhinus (Mammalia, Rhinocerotidae): Implications for taxonomy and paleobiogeography". Quaternary International. 674–675: 109–120. doi:10.1016/j.quaint.2022.11.008. S2CID   254391781.
  21. Pandolfi, Luca; Erten, Hüseyin (January 2017). "Stephanorhinus hundsheimensis (Mammalia, Rhinocerotidae) from the late early Pleistocene deposits of the Denizli Basin (Anatolia, Turkey)". Geobios. 50 (1): 65–73. Bibcode:2017Geobi..50...65P. doi:10.1016/j.geobios.2016.10.002.
  22. Kahlke, Ralf-Dietrich; Kaiser, Thomas M. (August 2011). "Generalism as a subsistence strategy: advantages and limitations of the highly flexible feeding traits of Pleistocene Stephanorhinus hundsheimensis (Rhinocerotidae, Mammalia)". Quaternary Science Reviews. 30 (17–18): 2250–2261. Bibcode:2011QSRv...30.2250K. doi:10.1016/j.quascirev.2009.12.012.
  23. van Asperen, Eline N.; Kahlke, Ralf-Dietrich (January 2015). "Dietary variation and overlap in Central and Northwest European Stephanorhinus kirchbergensis and S. hemitoechus (Rhinocerotidae, Mammalia) influenced by habitat diversity" (PDF). Quaternary Science Reviews. 107: 47–61. doi:10.1016/j.quascirev.2014.10.001. S2CID   83801422.
  24. García-Fernández, David; Cerdeño, Esperanza; Sanz, Montserrat; Daura, Joan (December 2023). "The Latest Occurrence of Stephanorhinus hundsheimensis (Rhinocerotidae) in Europe: The Skeletons from the Cova del Rinoceront Site (Castelldefels, Barcelona)". Quaternary. 6 (4): 60. doi: 10.3390/quat6040060 . hdl: 2445/207033 . ISSN   2571-550X.
  25. Diana Pushkina: The Pleistocene easternmost distribution in Eurasia of the species associated with the Eemian Palaeoloxodon antiquus assemblage. Mammal Review, 2007. Volume 37 Issue 3, Pages 224 - 245
  26. Pierre Olivier Antoine: Pleistocene and holocene rhinocerotids (Mammalia, Perissodactyla) from the Indochinese Peninsula. In: Comptes Rendus Palevol. 2011, S. 1–10.
  27. Stefaniak, Krzysztof; Kotowski, Adam; Badura, Janusz; Sobczyk, Artur; Borówka, Ryszard K.; Stachowicz-Rybka, Renata; Moskal-del Hoyo, Magdalena; Hrynowiecka, Anna; Tomkowiak, Julita; Sławińska, Joanna; Przybylski, Bogusław; Ciszek, Dariusz; Alexandrowicz, Witold Paweł; Skoczylas-Śniaz, Sylwia; Ratajczak-Skrzatek, Urszula (2023-05-09). "A skeleton of peat-trapped forest rhinoceros Stephanorhinus kirchbergensis (Jäger, 1839) from Gorzów Wielkopolski, Northwestern Poland: a record of life and death of the Eemian large mammals". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 308 (1): 45–77. doi:10.1127/njgpa/2023/1129. ISSN   0077-7749.
  28. Sala, Nohemi; Pablos, Adrián; Rodríguez-Hidalgo, Antonio; Arriolabengoa, Martin; Alcaraz-Castaño, Manuel; Cubas, Miriam; Posth, Cosimo; Nägele, Kathrin; Pantoja-Pérez, Ana; Arlegi, Mikel; Rodríguez-Almagro, Manuel; Conde-Valverde, Mercedes; Cuenca-Bescós, Gloria; Arribas, Alfonso; Gómez-Olivencia, Asier (February 2021). "Cueva de los Torrejones revisited. New insights on the paleoecology of inland Iberia during the Late Pleistocene". Quaternary Science Reviews. 253: 106765. Bibcode:2021QSRv..25306765S. doi:10.1016/j.quascirev.2020.106765.
  29. Kirillova, I. V.; Vershinina, A. O.; Zazovskaya, E. P.; Zanina, O. G.; Cutler, S.; Kosintsev, P. A.; Lapteva, E. G.; Chernova, O. F.; Shapiro, B. (December 2021). "On Time and Environment of Stephanorhinus kirchbergensis Jäger 1839 (Mammalia, Rhinoceratidae) in Altai and Northeastern Russia". Biology Bulletin. 48 (9): 1674–1687. Bibcode:2021BioBu..48.1674K. doi:10.1134/S1062359021090077. ISSN   1062-3590.
  30. Pang, Libo; Chen, Shaokun; Huang, Wanbo; Wu, Yan; Wei, Guangbiao (April 2017). "Paleoenvironmental and chronological analysis of the mammalian fauna from Migong Cave in the Three Gorges Area, China". Quaternary International. 434: 25–31. Bibcode:2017QuInt.434...25P. doi:10.1016/j.quaint.2014.11.039.
  31. Bratlund, B. 1999. Taubach revisited. Jahrbuch des Römisch-Germanischen Zentralmuseums Mainz 46: 61-174.
  32. Berruti, Gabriele Luigi Francesco; Arzarello, Marta; Ceresa, Allison; Muttillo, Brunella; Peretto, Carlo (December 2020). "Use-Wear Analysis of the Lithic Industry of the Lower Palaeolithic Site of Guado San Nicola (Isernia, Central Italy)". Journal of Paleolithic Archaeology. 3 (4): 794–815. Bibcode:2020JPalA...3..794B. doi:10.1007/s41982-020-00056-3. ISSN   2520-8217. S2CID   257091241.
  33. Chen, Xi; Moigne, Anne-Marie (November 2018). "Rhinoceros ( Stephanorhinus hemitoechus ) exploitation in Level F at the Caune de l'Arago (Tautavel, Pyrénéés-Orientales, France) during MIS 12". International Journal of Osteoarchaeology. 28 (6): 669–680. doi:10.1002/oa.2682. S2CID   80923883.
  34. Baquedano, Enrique; Arsuaga, Juan L.; Pérez-González, Alfredo; Laplana, César; Márquez, Belén; Huguet, Rosa; Gómez-Soler, Sandra; Villaescusa, Lucía; Galindo-Pellicena, M. Ángeles; Rodríguez, Laura; García-González, Rebeca; Ortega, M.-Cruz; Martín-Perea, David M.; Ortega, Ana I.; Hernández-Vivanco, Lucía (March 2023). "A symbolic Neanderthal accumulation of large herbivore crania". Nature Human Behaviour. 7 (3): 342–352. doi:10.1038/s41562-022-01503-7. ISSN   2397-3374. PMC   10038806 . PMID   36702939.
  35. Smith, Geoff M. (October 2013). "Taphonomic resolution and hominin subsistence behaviour in the Lower Palaeolithic: differing data scales and interpretive frameworks at Boxgrove and Swanscombe (UK)". Journal of Archaeological Science. 40 (10): 3754–3767. Bibcode:2013JArSc..40.3754S. doi:10.1016/j.jas.2013.05.002.